Modeling subjective memory beliefs and cognitive function in older adults: What’s memory got to do with it?

Brennan R. Payne1, Patrick L. Hill2, Alden L. Gross3, Jeanine M. Parisi4, George W. Rebok4 and Elizabeth A. L. Stine-Morrow1

1Beckman Institute and Dept. of Educational Psychology, University of Illinois; 2Dept. of Psychology, Carleton University; 3Dept. of Epidemiology, Johns Hopkins School of Public Health; and Center on Aging and Health, Johns Hopkins University; 4Dept. of Mental Health, Johns Hopkins School of Public Health

Rationale

- The relationship between memory beliefs and memory performance has been a major topic of investigation in cognitive aging literature for the past three decades (Berry, 1999; Herzog, et al., 1990; Staue-Morrow, et al., 2006; Rebok & Balas, 1989; West & Vassar, 2004).
- Little attention has been given to understanding the extent to which general cognitive function might account for the relationship between episodic memory performance and memory beliefs. This is important, given that age-related declines occur in a whole constellation of abilities, including changes in executive reasoning and psychomotor speed (Park et al., 1996), and these declines are often correlated (McArdis et al., 2002).

Method and Analytical Approach

- We analyzed pretest data from two different cognitive intervention studies (Senior Odyssey and Advanced Cognitive Training in Independent and Vital Elderly (ACTIVE)), using a two-stage modeling approach to test whether the relationship between memory performance and memory beliefs could be accounted for by a broader domain-general cognitive functioning factor (made up of psychomotor speed, executive reasoning, and episodic memory).

(1) We fit a structural equation model with correlated latent factors for memory, reasoning, and episodic memory as predictors of memory self-efficacy (MSE), to examine the unique influence of each cognitive function on memory beliefs (see Figure 1).

(2) We then fit a bifactor model (Holzinger & Swineford, 1937; Reise, 2012) to the cognitive performance data. Each cognitive test item loaded on a general cognitive factor. At the same time, individual domain-specific bifactors were included for reasoning, speed, and episodic memory, which represent unique variance in each domain. These factors were regressed onto MSE in order to test whether any bifactor maintains a unique relationship with memory beliefs after accounting for the domain-general influence of cognition on memory beliefs.

Study 1: Senior Odyssey (N = 462)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean or N</th>
<th>Standard Deviation of %</th>
<th>Observed Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>72</td>
<td>7.71</td>
<td>60-94</td>
</tr>
<tr>
<td>Education</td>
<td>15.5</td>
<td>2.63</td>
<td>9-20</td>
</tr>
<tr>
<td>MMSE</td>
<td>28.41</td>
<td>1.40</td>
<td>24-30</td>
</tr>
<tr>
<td>Female</td>
<td>341</td>
<td>74%</td>
<td>--</td>
</tr>
</tbody>
</table>

Measures

Memory (Mem): HVLT total immediate and delayed recall; Sentence Recall
Reasoning (IR): Letter Sets; Letter Series; Word Series; Number Series; Everyday Problem Solving
Speed: Letter Comparison; Pattern Comparison Finding A: Identical Pictures

Results

Model 1 (Figure 1A): Correlated Latent Factor
- Good fit to data.
- Latent memory, reasoning, and speed factors intercorrelated (see Table 1).
- Unique prediction of MSE from latent memory ($β = .28$, SE = .03, t = 8.65, p < .001) and latent reasoning ($β = .15$, SE = .03, t = 4.78, p < .001).
- Unique latent memory factor explains <1% variance in MSE ($β = .03$, t = 1.24, p = .21).

Model 2 (Figure 1B): General Cognition Bifactor
- Good fit to data.
- Domain general Cognition factor explains about 20% variance in MSE ($β = .45$, SE = .03, t = 13.43, p < .001).
- Unique latent memory factor explains <1% variance in MSE ($β = .06$, SE = .03, t = 1.21, p = .21).

Study 2: ACTIVE (N = 2,802)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean or N</th>
<th>Standard Deviation of %</th>
<th>Observed Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>74</td>
<td>5.91</td>
<td>65-94</td>
</tr>
<tr>
<td>Education</td>
<td>13.53</td>
<td>2.70</td>
<td>4-20</td>
</tr>
<tr>
<td>MMSE</td>
<td>27.31</td>
<td>2.01</td>
<td>23-30</td>
</tr>
<tr>
<td>Female</td>
<td>2126</td>
<td>76%</td>
<td>--</td>
</tr>
</tbody>
</table>

Measures

Memory (Mem): HVLT Total; Rey AVLRT; Rivermead Reasoning (IR): Letter Sets; Letter Series; Word Series
Speed: UFOV; Digit Symbol Copy and Substitution

Results

Model 1 (Figure 2A): Correlated Latent Factor
- Good fit to data.
- Latent memory, reasoning, and speed factors intercorrelated (see Table 1).
- Unique prediction of MSE from latent memory ($β = .28$, SE = .03, t = 8.65, p < .001) and latent reasoning ($β = .15$, SE = .03, t = 4.78, p < .001).

Model 2 (Figure 2B): General Cognition Bifactor
- Good fit to data.
- Domain general Cognition factor explains about 20% variance in MSE ($β = .45$, SE = .03, t = 13.43, p < .001).
- Unique latent memory factor explains <1% variance in MSE ($β = .06$, SE = .03, t = 1.21, p = .21).

Conclusions

- The inclusion of a general cognition factor reduced the relationship between memory performance and memory beliefs.
- The general cognition factor explained the greatest amount of variance in memory beliefs.
- These findings are consistent with the account that measures of dispositional memory beliefs reflect self-reports about cognition more generally, and may be one reason why memory beliefs have broader predictive validity for interventions that target fluid ability (Payne et al., 2012a,b).

References


1Beckman Institute and Dept. of Educational Psychology, University of Illinois; 2Dept. of Psychology, Carleton University; 3Dept. of Epidemiology, Johns Hopkins School of Public Health; and Center on Aging and Health, Johns Hopkins University; 4Dept. of Mental Health, Johns Hopkins School of Public Health