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Item compromise persists in undermining the integrity of testing, even secure administrations of
computerized adaptive testing (CAT) with sophisticated item exposure controls. In ongoing efforts to
tackle this perennial security issue in CAT, a couple of recent studies investigated sequential procedures
for detecting compromised items, in which a significant increase in the proportion of correct responses
for each item in the pool is monitored in real time using moving averages. In addition to actual responses,
response times are valuable information with tremendous potential to reveal items that may have been
leaked. Specifically, examinees that have preknowledge of an item would likely respond more quickly to it
than those who do not. Therefore, the current study proposes several augmented methods for the detection
of compromised items, all involving simultaneous monitoring of changes in both the proportion correct
and average response time for every item using various moving average strategies. Simulation results with
an operational item pool indicate that, compared to the analysis of responses alone, utilizing response times
can afford marked improvements in detection power with fewer false positives.

Key words: test security, response time, computerized adaptive testing, sequential analysis, change-point
detection, repeated significance tests.

1. Introduction

In a typical administration of computerized adaptive testing (CAT), items are sequentially
selected in real time from a large item pool according to the examinee’s current performance.
Ideally, this provides each examinee with a unique set of items with minimal overlap, thereby dis-
couraging cheating by copying or sharing answers. In practice, however, item selection algorithms
based on maximizing information (or minimizing standard error of measurement) are generally
prone to highly unbalanced item exposure. Among other concerns, frequently administered items
are at great risk for becoming compromised, thereby undermining the integrity of the test.

To counter such a glaring security issue in CAT, much psychometric research in test security
has been focused on preventive measures involving some form of item exposure control while still
maintaining the efficiency or accuracy of ability estimation as much as possible. A few common
strategies in this regard include the Sympson–Hetter (SH) exposure control (Hetter & Sympson,
1997; Sympson&Hetter, 1985), variations ormodifications of theSHmethod (Stocking, 1993; van
der Linden, 2003), a-stratification techniques (Chang, Qian, &Ying, 2001; Chang &Ying, 1999),
the randomesque method (Kingsbury & Zara, 1989), and more fine-grained controls conditional
on ability (Stocking & Lewis, 1998; Chang, Ansley, & Lin, 2000). Georgiadou, Triantafillou, and
Economides (2007) provide a fairly comprehensive review of item exposure control strategies.
However, even the most successful exposure controls cannot entirely prevent the problem of
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compromised items in practice, simply because a realistic item pool size is usually much smaller
than the number of examinees. Since most items will necessarily be administered multiple times,
they are inevitably vulnerable to compromise by unscrupulous test-takers. Therefore, there is a
great need for diagnostic measures to spot anomalous behavior of both examinees and items alike.

From the examinee perspective, the general strategy is to detect an aberrant pattern of
responses or response times (RTs) across all items that have been administered to the test-taker.
There is extensive literature on the use of person misfit statistics and related methods for this
general purpose, including but certainly not limited to the following: the lz statistic and variations
thereof (Drasgow, Levine, & Williams, 1985; Armstrong, Stoumbos, Kung, & Shi, 2007), cau-
tion indices (Tatsuoka, 1984; McLeod & Lewis, 1999), score ratio (Karabatsos, 2003), likelihood
ratio (Levine & Drasgow, 1988), KL divergence and K-Index (Belov, Pashley, Lewis, & Arm-
strong, 2007; Belov & Armstrong, 2010), posterior shift (Belov, 2015), data forensics (Impara &
Kingsbury, 2005), effective response time (Meijer & Sotaridona, 2006), Bayesian checks (van der
Linden& vanKrimpen-Stoop, 2003; van der Linden&Guo, 2008; van der Linden&Lewis, 2015;
Marianti, Fox,Marianna, Veldkamp, &Tijmstra, 2014), CUSUM techniques (vanKrimpen-Stoop
& Meijer, 2001; Meijer, 2002; Armstrong & Shi, 2009; Egberink, Meijer, Veldkamp, Schakel, &
Smid, 2010; Tendeiro & Meijer, 2012), and outlier detection (Mavridis & Moustaki, 2008, 2009;
Moustaki & Knott, 2014; Öztürk & Karabatsos, 2017).

From the item perspective, a common strategy is to detect item parameter drift (IPD). In
brief, IPD methods broadly focus on identifying items whose parameters may have drifted over
time, for a host of reasons ranging from poor initial calibration to changes in curriculum (see, for
example, Risk (2015) for a recent review of the literature). Within the vast literature, two papers
stand out in their novel use of CUSUM to sequentially monitor IPD for the specific purpose of
detecting compromised items. A study by Veerkamp and Glas (2000) employed a standardized
CUSUM statistic for detecting drift in the restricted 3PLM (i.e., fixed c parameter), and a recent
study by Kang and Chang (2016) extended the technique by using a log-likelihood CUSUM
statistic for detecting overall drift in both the unrestricted 3PLM and the lognormal model of RTs
within the hierarchical framework (van der Linden, 2007). Although these methods demonstrated
great promise, their major drawback is the need for repeated item calibration at each sequential
step, which may be infeasible or impractical due to inadequate sample size and tremendous
computational burden. Consequently, for practical implementation, CUSUM in this context can
only be performed at intervals throughout the usage lifetime of an item (e.g., every 100 times the
item is exposed).

Another strategy from the item perspective is to detect an aberrant pattern of responses or
RTs across all examinees that have been administered the item. However, literature on this front is
relatively scarce, a handful of examples including a merged information theory and combinatorial
optimization algorithm (Belov, 2014), a dual differential person functioning (DPF) and differential
item functioning (DIF) approach (O’Leary & Smith, 2017), and a log-odds ratio index of item fit
(McLeod&Schnipke, 1999). These particular methods can be effective in detecting compromised
items, but only after one or more groups of aberrant (or a larger set of potentially aberrant)
examinees have first been identified at the end of a testing cycle. Alternatively, Lu and Hambleton
(2003) demonstrated the use of an item misfit index K1 (originally reported by Zhu, Yu, and Liu
(2002) as Zc) to detect disclosed items in CAT at a single occasion, while Han and Hambleton
(2004) utilized the same index to pioneer a procedure for real-time detection of compromised
items in linear computer-based testing (CBT). The essential idea in the latter paper is that, for a
testing period with a set item bank, each item can be continuously monitored after every exposure
for any significant increase in the proportion of correct responses via moving averages. In this
fashion, Zhang (2014) and Zhang and Li (2016) investigated the real-time detection procedure in
the specific context of CAT. The various implementations of this technique are illustrated shortly
after explaining the requisite theoretical framework in the next section. In brief, the procedures
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were shown to be capable of detecting compromised items quickly with relatively high accuracy
under certain conditions, albeit with room for improvement.

Therefore, in efforts to build upon this promising work, the current study proposes the use
of RTs in addition to responses. More specifically, examinees’ RTs are incorporated into the
process by simultaneously monitoring any significant decrease in the average RT of each item
over repeated exposures. By evaluating abnormal changes in both the number of correct responses
and the averageRTs for items, the procedure canprovide evengreater statistical power for detecting
compromise as well as stronger substantive evidence that an item is indeed compromised. The
efficacy of this enhanced method is investigated in detail.

2. CAT Framework

The primary purpose ofCAT is tomeasure an examinee’s latent trait(s) of interest as efficiently
as possible, in terms of either maximal accuracy with a fixed number of items or a certain level
of accuracy with a minimal number of items. As such, the core of any CAT system is an adaptive
algorithm that strives to select the most appropriate sequence of items for the test-taker. Any such
algorithm requires a way to relate the latent trait(s) to the psychometric properties of items, which
is principally fulfilled by a class of models within the item response theory (IRT) framework. In
particular, the three parameter logistic model (3PLM; Lord & Novick, 1968) is routinely used for
applications measuring univariate ability with dichotomous items. It is typically parameterized
as

P(Xi j = 1|θ) = Pj (θi ) = c j + 1 − c j
1 + e−a j (θi−b j )

, (1)

in which Xi j is a binary random variable mapping the i th examinee’s response to the j th item
as either 1 for correct or 0 for incorrect, and θ is the latent ability parameter. Hence, function
Pj (θi ) outputs the conditional probability of correctly answering item j given the examinee’s
ability θi , where a j , b j , and c j represent the item discrimination, difficulty, and pseudo-guessing
parameters, respectively. θi and b j are always scaled on the same continuous metric, which grants
a direct and meaningful link between the test-taker’s ability and the item’s difficulty.

Item selection algorithms are commonly based on the Fisher information, which can be
derived for a 3PLM item as

I j (θi ) = −E

(
∂2

∂θ2i
log L(θi |xi j )

)
= a2j

(
1 − Pj (θi )

Pj (θi )

) (
Pj (θi ) − c j
1 − c j

)2

. (2)

Note that L(θi |xi j ) is the likelihood function of θi given an observed response xi j :

L(θi |xi j ) = Pj (θi )
xi j [1 − Pj (θi )]1−xi j . (3)

The classic maximum Fisher information (MFI) method chooses the next item with the largest
I j (θ̂i ), where θ̂i is the interimmaximum likelihood estimate (MLE) of θi based on the examinee’s
answers to the previous items (Lord, 1980). Specifically, given observed responses to a set of k
items, x = {x1, x2, . . . , xk}, the MLE of θi is computed as

θ̂ML
i = argmaxθi

L(θi |xi ) = argmaxθi

k∏
j=1

Pj (θi )
xi j [1 − Pj (θi )]1−xi j , (4)
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and its estimated standard error is the inverse square root of the cumulative Fisher information
across the k items:

SE
(
θ̂ML
i

)
≈ 1√

I (k)
(
θ̂ML
i

) = 1√∑k
j=1 I j

(
θ̂ML
i

) . (5)

Technically, θ̂ML
i relies on 3PLM’s fundamental assumption of local independence (i.e., condi-

tional independence of Xi1, . . . , Xik given θi ), which is necessarily violated in CAT (Mislevy &
Chang, 2000). Nevertheless, under mild regularity conditions with an infinite item pool, θ̂ML

i for
MFI still converges in distribution as follows:

θ̂ML
i

d−→ N
(

θi ,
1

I (k)(θi )

)
as k → ∞ (6)

(Chang & Ying, 2009; Chang, 2015). As a result, the MFI method theoretically produces an
unbiased estimate and maximizes the measurement precision of θi when using MLE.

A notable drawback ofMLE, however, is that the estimation can be volatile or even infeasible
when there is little to no variation in responses, especially early onwhen only a few items have been
answered. Therefore, expected a posteriori (EAP) estimation is often employed as an alternative,
which calculates the expected value of the posterior distribution of θ given x (over the parameter
space �) as follows:

θ̂ E AP
i = Eθi f (θi |xi ) =

∫
�

θi
L(θi |xi )g(θi )∫

�
L(θi |xi )g(θi )dθi dθi =

∫
�

θi L(θi |xi )g(θi )dθi∫
�
L(θi |xi )g(θi )dθi . (7)

(Bock & Mislevy, 1982). Note that g(θi ) is a prior density function of θi , which is usually set as
uniform or standard normal in the absence of a more informative prior. Since the above expression
is often analytically intractable, it can be numerically approximated as

θ̂ E AP
i ≈

∑
Q θq L(θq |xi )g(θq)∑
Q L(θq |xi )g(θq) , (8)

where Q is a finite set of quadrature nodes (θq ∈ Q) that is representative of �. The relationship
between θ̂ E AP

i and θ̂ML
i is theoretically established by the asymptotic posterior normality of θi

under weak regularity conditions (Chang & Stout, 1993), which can be interpreted as

f (θi |xi ) ≈ N

⎛
⎝θ̂ML

i ,
1

I (k)
(
θ̂ML
i

)
⎞
⎠ . (9)

In other words, θ̂ E AP
i ≈ θ̂ML

i and SE(θ̂ E AP
i ) ≈ I (k)(θ̂ML

i )−1/2 for large k, thereby justifying the
use of the EAP estimator with MFI in the long run.

Regardless of the choice between estimators, the unrestricted formofMFI is highly efficient in
terms of ability estimation. Its optimal measurement efficiency, however, comes at the heavy cost
of extremely unbalanced item pool usage, as items with large a parameters are disproportionately
favored due to their high information (Chang & Ying, 1999; Chang et al., 2001; Hau & Chang,
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2001). In fact, low discrimination items are seldom if ever used, which is clearly an inefficient
management of resources. Furthermore, high exposure items are at greater risk of compromise to
the detriment of test security. Therefore, MFI is almost always restricted with some form of item
exposure control in practice.

Amongnumerous schemes that havebeenproposed, the classic Sympson–Hetter (SH)method
of exposure control (Hetter & Sympson, 1997; Sympson & Hetter, 1985) is perhaps the most well
known. It probabilistically enforces a maximum exposure rate as follows: (1) representing the
event of selecting item j as S j and the event of administering item j as A j , the probability
of administering an item given that it has been selected is P(A j |S j ) = P(A j ∩ S j )/P(S j ); (2)
recognizing that an itemcanonly be administered if it has been selected, or A j ⊆ S j , P(A j∩S j ) =
P(A j ), which is the actual exposure rate of the item; (3) setting themaximum exposure rate at r , or
P(A j ) = r , the probability of administering the selected item j is set to be P(A j |S j ) = r/P(S j ).
Although effective in theory, a practical limitation of the SH method is that the probability of
selecting item j, P(S j ) can only be estimated through iteratedCAT simulations until a stable value
is obtained, which may take as many as 100–150 repetitions (van der Linden, 2003). Furthermore,
since unselected items cannot be administered, SH is unable to increase exposure for underexposed
items (Chang & Ying, 1999).

A notable alternative to MFI (with or without an externally imposed constraint such as SH) is
the a-stratified with b-blocking design (ASB; Chang et al., 2001), which achieves balance in item
pool usage through an innovative item selection procedure. The ASB method first partitions the
item bank into several blocks according to themagnitude of b values, sorts each block according to
the magnitude of a values, then forms new strata by grouping items with the same rank order of a
across the blocks. Ultimately, theCAT administration is divided into successive stages, proceeding
from the stratum with the lowest to highest a values for best results (Hau & Chang, 2001). At any
given stage, the next item chosen is the one that maximizes the b-matching criterion:

Bj (θi ) = |θi − b j |−1. (10)

In other words, the item whose difficulty is closest to the interim ability estimate is selected next
from the current stratum. Note that b-matching is equivalent to MFI for Rasch or 1PLM items
(i.e., a = 1 and c = 0), which is suboptimal for 3PLM items in terms of maximizing information.
Nevertheless, by coercing items to be drawn more evenly across the item pool in this way, ASB
has been shown to dramatically improve the balance of item exposure with a marginal decrease
in the accuracy of θ estimation (Chang & Ying, 2008).

Therefore, in the interest of stronger test security and better item pool usage, the ASBmethod
was employed in the present investigation of utilizing RTs in the sequential detection of com-
promised items. Additionally, ability estimation was performed with a combination approach, in
which EAP was used as a provisional fail-safe whenever an infeasibility occurred with MLE.
In contrast, the original sequential detection study by Zhang (2014) implemented MFI with SH
exposure control and exclusive EAP estimation, and the follow-up study by Zhang and Li (2016)
used a shadow test engine with all interim estimates in EAP and the final estimates in MLE. The
shadow test methodology is not discussed for brevity.

3. Sequential Monitoring Procedures

3.1. Using Responses

The goal is to detect a significant increase in the number of correct responses to an item
over time, which can be accomplished by periodically comparing the sum of recent responses
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to a benchmark value that is expected when the item is not compromised. To this end, define a
moving sample to be the most recent m examinees to item j , which gradually isolates potentially
compromised responses after a leak. The sum of responses in themoving sample is then calculated
as,

Y (m)
j =

n∑
i=n−m+1

Xi j , (11)

where the superscript (m) denotesmoving sample,m is themoving sample size, and n (> m) is the
updated total sample size for item j . Under the null hypothesis that the item is not compromised,
Xi j is a Bernoulli random variable with the following expectation and variance:

E(Xi j ) = Pj (θi ), Var(Xi j ) = Pj (θi )(1 − Pj (θi )). (12)

Since Xi j ’s are independently but not identically distributed, Y
(m)
j is a Poisson-binomial random

variable with the following expectation and variance:

E
(
Y (m)
j

)
=

n∑
i=n−m+1

Pj (θi ), Var
(
Y (m)
j

)
=

n∑
i=n−m+1

Pj (θi )(1 − Pj (θi )). (13)

Hence, under the null assumption, the following test statistic has an asymptotic standard normal
distribution:

Y (m)
j − ∑n

i=n−m+1 Pj (θi )√∑n
i=n−m+1 Pj (θi )(1 − Pj (θi ))

, (14)

which is the moving average index used by both Han and Hambleton (2004) and Zhang and Li
(2016). Noting that p̂(m)

j = Y (m)
j /m is a sample proportion, the test statistic can be equivalently

expressed as

p̂(m)
j − ∑n

i=n−m+1 Pj (θi )/m√∑n
i=n−m+1 Pj (θi )(1 − Pj (θi ))/m2

d−→ N (0, 1) under H0, (15)

where the null hypothesis, H0 : p(m)
j = ∑n

i=n−m+1 Pj (θi )/m, is tested against the one-sided

alternative hypothesis, H1 : p(m)
j >

∑n
i=n−m+1 Pj (θi )/m. However, true θi is never known in

reality, so Zhang and Li (2016) approximated the test statistic by substituting with θ̂i . This method
was shown to be very powerful, but only when ability estimation was relatively uncorrupted by
item preknowledge. As an item pool becomes progressively compromised, an examinee would
likely have preknowledge of a greater number of administered items. In effect, θ̂i ’s would become
increasingly positively biased, thereby inflating E(Y (m)

j ) and diminishing the power to detect
compromise.

As an alternative approach, Zhang (2014) proposed framing the problem as a comparison
of two sample proportions. Specifically, the moving sample is compared to a reference sample,
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which is defined as the first n − m examinees to item j . The proportion of correct responses in
this complementary sample is then computed as

p̂(r)
j =

∑n−m
i=1 Xi j

n − m
, (16)

where the superscript (r) denotes reference sample. p̂(r)
j serves as an appropriate empirical bench-

mark as long as the item has not been compromised before n −m. Thus, the test statistic for two
sample proportions can be constructed as

p̂(m)
j − p̂(r)

j√
p j (1 − p j )

(
1

m
+ 1

n − m

) d−→ N (0, 1) under H0, (17)

where H0 : p(m)
j = p(r)

j is tested against H1 : p(m)
j > p(r)

j . Since the true p j is unknown, the

original study substituted with p̂(r)
j in the denominator to approximate the test statistic. Never-

theless, the present study opts to use the more conventional method of estimating p j by pooling

p̂(r)
j and p̂(m)

j as

p̂ j = (n − m) p̂(r)
j + m p̂(m)

j

(n − m) + m
=

∑n
i=1 Xi j

n
, (18)

which is simply the proportion correct out of all n responses for item j . Ultimately, the approxi-
mated test statistic is given as

Z j = p̂(m)
j − p̂(r)

j√
p̂ j (1 − p̂ j )

(
1

m
+ 1

n − m

) = p̂(m)
j − p̂(r)

j√
p̂ j (1 − p̂ j )/m

√
n − m

n
, (19)

which is used to conduct the test each time the item is administered to a new examinee by
comparing it to a chosen critical value, zc. In other words, if Z j > zc, then H0 is rejected and the
item is flagged as compromised since there is evidence that the number of correct responses has
increased significantly. Figure 1 illustrates the sequential process of monitoring an item starting
at a predesignated exposure point followed by three possible decision scenarios: (1) type I error
of flagging an uncompromised item; (2) correct decision of flagging a compromised item, where
the number of exposures from the point of compromise (also known as the change point) to point
of flag is called the lag; (3) type II error of failing to flag a compromised item by the end of the
CAT cycle.

The choice of zc depends on the desired rate of type I error, α, which is complicated by the
fact that many items are each being tested over repeated occasions. In other words, multiplicity
occurs both between and within items, resulting in different interpretations of α depending on
how we define the “family” of tests for which type I error should be controlled. In the simplest
case, a “family” consists of a single monitored item on a single occurrence, so α is the probability
of incorrectly flagging a given item on any given exposure. In other words, there is a 100(α)%
chance of flagging an uncompromised item every time it is tested. This level of error is easily
controlled by setting zc = �−1(1 − α), where � is the standard normal CDF. On the other
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Figure 1.
An illustration of the sequential monitoring process with three possible decision scenarios. In all scenarios, the number
line represents the sequential exposure count of item j , the blue triangle represents the exposure at which the monitoring
process starts, and the purple and yellow bars represent the reference and moving samples, respectively. In scenario 1
where the item has not been compromised, the white flag indicates the exposure at which the item was incorrectly flagged
(type I error). In scenario 2 where the item has been compromised at the exposure indicated by the red ×, the white flag
indicates the exposure at which the item was correctly flagged, and the exposure difference between the flag and × is the
lag. In scenario 3 where the item has been compromised at the exposure indicated by the red ×, the white flag within the
no symbol indicates that the item has been incorrectly missed (type II error) (Color figure online).

extreme, a “family” could be defined as all monitored items on all occurrences, in which case α

is the probability of incorrectly flagging at least once across all items and their exposures for the
duration of a given CAT cycle. In other words, we can be 100(1 − α)% confident that none of
items in the bank will be incorrectly flagged. Determining a precise zc to control for this level
of error is much more difficult due to an unknown degree of dependence between items as well
as heavy dependence within items without prior knowledge of exposure counts. Note that the
strongest dependence within an item occurs on two consecutive tests, since the latter shares all of
the same data with the former except for a single new observation added to the moving sample
and the oldest observation in the moving sample transferred to the reference sample. In this study,
a “family” is defined more moderately as a single monitored item across all occurrences, so α

is the probability of incorrectly flagging an item across all of its exposures. In other words, for
a given CAT cycle, we are willing to tolerate flagging 100(α)% of uncompromised items in the
bank. Lacking more convenient analytic methods, Monte Carlo simulations can be conducted to
determine zc for desired values of α.

3.2. Using Response Times

In general, examinees with preknowledge of an item would be expected to respond quicker
than usual. Granted, it is theoretically plausible for some crafty cheaters to game the system
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by deliberately stalling for time. However, for most operational CATs, this concern is largely
immaterial for three reasons. First, this would be a rare occurrence because cheaters would need
to be reasonably sure that they have preknowledge of all or most items they will encounter on
the test. Of course, this is only possible if somehow the entire item pool was compromised and
they managed to memorize everything. Otherwise, for a timed exam, cheaters would be far more
inclined to quickly answer the few familiar items to allocate more time for the unfamiliar ones.
Second, foolhardy cheaters who attempt this strategy are unlikely to accurately judge how long
to delay for a given item before moving on. Most would probably play it safe and not wait too
long before moving on. Third, a tiny fraction of highly sophisticated cheaters may slightly hinder
the performance of the detection procedures, but the overall impact would probably be trivial.

Thus, the goal is to detect a significant decrease in RTs to an item over repeated adminis-
trations, which can be accomplished by periodically comparing the average of recent RTs to a
benchmark value that is expected when the item is not compromised. This requires a model of
RTs that, at the very least, parameterizes the speededness of individual items across examinees.
Among a variety of options, the lognormal model (van der Linden, 2006) remains a popular choice
for its relative simplicity and practicability for typical RT data.

Given the latent speed of the i th examinee (τi ), the density function of RT for the j th item
(Ti j ) is defined as

f (ti j |τi ) = α j

ti j
√
2π

e−[α j (log ti j−β j+τi )]2/2, (20)

whereα j (not to be confusedwith type I error rate) andβ j are, respectively, the time discrimination
and time intensity parameters, and τi and β j are scaled on the same metric. Rewriting the density
function in standard form for a lognormal random variable,

f (ti j |τi ) = 1

ti j
√
2π(1/α j )2

e−[log ti j−(β j−τi )]2/[2(1/α j )
2], (21)

it becomes clear that μi j = β j − τi and σ 2
j = (1/α j )

2. In other words, conditional on examinee
speed, the log of RT is normally distributed as follows:

log Ti j |τi ∼ N
[
β j − τi , 1/α

2
j

]
. (22)

Hence, amoving sample technique is proposed inwhich the average logRTof the lastm examinees
for item j is first computed as

μ̂
(m)
j = 1

m

n∑
i=n−m+1

log Ti j . (23)

The expectation and variance of μ̂
(m)
j under the null are

E
(
μ̂

(m)
j

)
= 1

m

n∑
i=n−m+1

(β j − τi ), Var
(
μ̂

(m)
j

)
= 1

mα2
j

, (24)



EDISON M. CHOE ET AL. 659

so the following test statistic can be constructed:

μ̂
(m)
j − ∑n

i=n−m+1(β j − τi )/m

(1/α j )/
√
m

d−→ N (0, 1) under H0, (25)

where H0 : μ
(m)
j = ∑n

i=n−m+1(β j−τi )/m is tested against H1 : μ
(m)
j <

∑n
i=n−m+1(β j−τi )/m.

Although log Ti j ’s are independently but not identically distributed, the asymptotic normality of
the test statistic is assured by Lyapunov’s CLT (see Appendix for proof). But since the true τi ’s
are unknown, the test statistic could be approximated by substituting with the MLE’s of τi , which
are conveniently calculated as

τ̂i =
∑K

j=1 α2
j (β j − log Ti j )∑K
j=1 α2

j

(26)

given an examinee’s RTs on all K items administered (van der Linden, 2006). Just as with ability,
however, speed would be routinely overestimated for those with preknowledge of administered
items, thereby reducing the power of the test.

To avoid having to determine specific τi ’s for each item, a general assumption could be made
that τi follows a standard normal distribution for every item j . Defining g(τi ) to be the standard
normal density function, it can be shown that the marginal density of RT for item j is

f (t j ) =
∞∫

−∞
f (t j |τi )g(τi )dτi = 1

t j

√
2π

(
1 + 1/α2

j

)e−[log t j−β j ]2
/[

2
(
1+1/α2

j

)]
, (27)

which is lognormal with μ j = β j and σ 2
j = 1 + 1/α2

j . In other words, the marginal distribution
of log RT is as follows:

log Tj ∼ N [β j , 1 + 1/α2
j ], (28)

which simplifies the null expectation and variance of μ̂
(m)
j to,

E
(
μ̂

(m)
j

)
= β j , Var

(
μ̂

(m)
j

)
=

(
1 + 1/α2

j

)
/m. (29)

As a result, the following test statistic can be constructed:

μ̂
(m)
j − β j√(

1 + 1/α2
j

)
/m

∼ N (0, 1) under H0, (30)

where H0 : μ
(m)
j = β j is tested against H1 : μ

(m)
j < β j . Nevertheless, even if it is true that

τi is standard normal in the general population, this convenient formulation only holds when θi
and τi are independent. Otherwise, ASB would indirectly influence the distribution of τi ’s for an
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item. For instance, if θi and τi are positively correlated, an item with high b j would generally
be selected for examinees with high θi ’s and in turn higher τi ’s. Consequently, τi ’s for this item
would no longer be distributed as standard normal, rendering the above test statistic inaccurate.

Alternatively, an empirical route can be taken in which the moving sample is compared to the
reference sample via a two-sample means t-test. The mean of log RTs for the reference sample is

μ̂
(r)
j = 1

n − m

n−m∑
i=1

log Ti j , (31)

and the variances of log RTs for the moving and reference samples are

σ̂
2(m)
j =

∑n
i=n−m+1

(
log Ti j − μ̂

(m)
j

)2
m − 1

and σ̂
2(r)
j =

∑n−m
i=1

(
log Ti j − μ̂

(r)
j

)2
n − m − 1

, (32)

respectively. Assuming that σ 2(m)
j = σ

2(r)
j , the pooled sample variance is

σ̂ 2
j = (m − 1)σ̂ 2(m)

j + (n − m − 1)σ̂ 2(r)
j

n − 2
. (33)

Therefore, the test statistic is given as

Wj = μ̂
(m)
j − μ̂

(r)
j√

σ̂ 2
j

(
1

m
+ 1

n − m

) = μ̂
(m)
j − μ̂

(r)
j

σ̂ j/
√
m

√
n − m

m
∼ T (n − 2) under H0, (34)

where H0 : μ
(m)
j = μ

(r)
j is tested against H1 : μ

(m)
j < μ

(r)
j each time the item is administered to

a new examinee by comparingWj to a specified critical value, tc. In other words, ifWj < tc, then
H0 is rejected and the item is flagged as compromised since there is evidence that the average log
RT has dropped significantly. As with zc when testing proportions, tc for desired levels of α can
be found via Monte Carlo.

3.3. Using Responses and Response Times Jointly

The sequential monitoring of responses and RTs, as described above, can be run concurrently
but independently as dual univariate (DU) procedures. Within this scheme, define two ways to
deem an item compromised:

DU - 1: Flag item j if [(Z j > zc) ∩ (Wj < 0)] ∪ [(Z j > 0) ∩ (Wj < tc)];
DU - 2: Flag item j if (Z j > zc) ∩ (Wj < tc).

DU-1 presumes that a significant result for either responses or RTs is sufficient evidence for
compromise, as long as the insignificant result is in the direction of H1. On the other hand, DU-2
presumes that significant results for both responses and RTs are necessary to make an informed
decision. To avoid the complication of having to determine separate critical values for the response
and RT processes, the latter can just be set as tc = − zc.
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Alternatively, responses and RTs can be monitored simultaneously within a single multi-
variate (SM) framework, which accounts for the possible dependence between responses and
RTs. Dropping the subscript j to reduce notational clutter, define the following moving sample
statistics for item j : μ̂(m)

1 = p̂(m) is the mean of responses (i.e., proportion of correct responses),

μ̂
(m)
2 is the mean of log RTs, σ̂ 2(m)

1 is the variance of responses, σ̂ 2(m)
2 is the variance of log RTs,

and σ̂
(m)
12 is the covariance between responses and log RTs. Unbiased estimators are used in all

cases, including the sample variance of responses: σ̂
2(m)
1 = p̂(m)(1 − p̂(m))(m/(m − 1)). Thus,

the estimated mean vector and covariance matrix for a moving sample can be specified as

μ̂
(m) =

[
μ̂

(m)
1

μ̂
(m)
2

]
and �̂

(m) =
[
σ̂
2(m)
1 σ̂

(m)
12

σ̂
(m)
12 σ̂

2(m)
2

]
, (35)

respectively. Likewise, for the reference sample,

μ̂
(r) =

[
μ̂

(r)
1

μ̂
(r)
2

]
and �̂

(r) =
[
σ̂
2(r)
1 σ̂

(r)
12

σ̂
(r)
12 σ̂

2(r)
2

]
. (36)

Although the joint distribution of responses and RTs is clearly not normal, the asymptotic bivariate
normality of the mean vectors can be inferred by the multivariate CLT. Therefore, computing the
unbiased pooled covariance matrix as

�̂ = m − 1

n − 2
�̂

(m) + n − m − 1

n − 2
�̂

(r)
, (37)

the two-sample Hotelling’s T 2 statistic can be constructed as

T 2 =
[
μ̂

(m) − μ̂
(r)

]′ [
�̂

(
1

m
+ 1

n − m

)]−1 [
μ̂

(m) − μ̂
(r)

]
, (38)

which is approximately related to the F-distribution as follows:

F = n − 3

2(n − 2)
T 2 ∼ F(2, n − 3) under H0. (39)

The null hypothesis, H0 : μ(m) = μ(r), is tested against the directional alternative hypothesis,
H1 : μ

(m)
1 > μ

(r)
1 & μ

(m)
2 < μ

(r)
2 , after each item exposure until significance is reached.

In other words, an item is flagged as compromised if F > Fc, provided that p̂(m) > p̂(r) and
μ̂

(m)
2 < μ̂

(r)
2 . The imposed constraints ensure that the specific directionality of the test is achieved,

and the critical value Fc can be determined for any level of α through Monte Carlo. Note that the
conventional Hotelling’s T 2 test with the non-directional alternative, H1 : μ(m) �= μ(r), would
be inefficient in this context.
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4. Methods

4.1. Data

The sequential monitoring procedures were evaluated through simulations based on real data
from a high-stakes, large-scale standardized CAT. The data consisted of raw responses and RTs
(in minutes) from about 2000 examinees with an item pool of about 500 items whose 3PLM
parameters were already estimated. The lognormal model parameters were calibrated under the
two-level hierarchical framework (van der Linden, 2007), which accounts for the relationship
between accuracy and speed. The first level consisted of the 3PL and lognormal models, and the
second level specified the covariance structure between the person parameters (θi , τi ) and among
the item parameters (a j , b j , c j , α j , β j ). Note that this modeling framework disregards the classic
within-person speed-accuracy tradeoff, or in otherwords, the compromise between θi and τi within
an individual examinee during the course of the test. Instead, a reasonable assumption is made
that an individual’s latent parameters remain constant as long as the test is not unduly speeded.
Ultimately, α j , β j , θi , and τi were estimated using a modified version of van der Linden’s (2008)
MCMC routine that fixed a j , b j , and c j to the pre-calibrated values and centered the distribution
of τi at 0. Using 10,000MCMC draws with a burn-in size of 5000, trace plots with multiple chains
displayed rapid mixing for all estimated parameters. All converged estimates from this calibration
step were regarded as the true parameter values when simulating CAT. Note that as a consequence
of disregarding errors in the item parameter estimates in the simulation, the absolute performances
of the detectionmethodsmay be overly optimistic. Nevertheless, the primary purpose of this study
is to compare their relative performances, which should not be affected.

4.2. Simulation Design

The CAT systemwas built upon the ASB item selection algorithm, with the item pool divided
into 5 strata of about 100 items each. Fixing the test length at 30 items, the first 5 were chosen
randomly from each stratum in order to calculate initial estimates of θi and τi , then subsequent
items were selected using the b-matching criterion at each of the five stages. Additionally, the
maximum exposure rate was set at 0.2 to ensure a relatively balanced usage of items even under
extreme simulation conditions.Basedon the true parameters, the i th examinee’s response to the j th
administered itemwas randomlygenerated in real time from theBernoulli distributionwith success
probability Pj (θi ); likewise, response time was randomly generated from logN (β j − τi , 1/α2

j ).
There are two broad manifestations of item compromise in CAT: (1) a simple situation in

which a set of items leak to the general public, thereby giving any test-taker an opportunity
to gain preknowledge of any leaked item (e.g., overexposed items spreading through word of
mouth or discussions in online forums); and (2) a more complex situation in which one or more
subsets of examinees gain preknowledge of different subsets of the item pool (e.g., groups of
colluders sharing stolen items). Realistically, it is possible for either or both forms of compromise
to transpire during a CAT cycle. For the purposes of this study, however, simulating just the simple
scheme was deemed adequate to evaluate the performances of the detection methods without loss
of generality. This is because the methods are only trying to detect a suspicious change in the
response and RT processes for an item, irrespective of the mechanism of compromise and pattern
of preknowledge. In other words, it is largely irrelevant how the item got disclosed or who knows
the answers to which items. The only thing of consequence for the monitoring procedures is that,
for any given item, there is a sudden increase in the number of correct responses and/or decrease
in average RTs after a certain point, however that may have occurred.

Formally, every examinee was assumed to be a potential beneficiary of a compromised item
with stationary probability ψ . In other words, ψ is the probability of any examinee having pre-
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knowledge of any given compromised item:

ψ = P(preknowledge | compromised). (40)

Thus, the preknowledge distribution of responses to any compromised item was modeled as

P∗(X = x) = 0.999x · 0.001(1−x) ⇔ X ∼ Bernoulli(0.999), (41)

which specifies a correct responsewith near but not absolute certainty to allow for inadvertent mis-
takes by even those with preknowledge. Also, the preknowledge distribution of RTs (in minutes)
on any compromised item was modeled as

f ∗(ti j ) = 3.5

ti j
√
2π

e−3.52(log ti j+2)/2 ⇔ log T ∼ N (−2, 1/3.52), (42)

which specifies a reasonable range from about 2 to 30 s with a mean of about 8.5 s. Therefore,
responses and RTs to an item, from the point of compromise onward, follow the preknowledge
distributions with probability ψ and the regular distributions with probability 1 − ψ , which can
be expressed in terms of mixture distributions as follows:

P̃j (θi ) = ψP∗(Xi j = 1) + (1 − ψ)Pj (θi ), (43)

f̃ j (ti j |τi ) = ψ f ∗(ti j ) + (1 − ψ) f j (ti j |τi ). (44)

The monitoring process was set to start for every item at the 40th exposure using a moving
sample size of m. For instance, using m = 10, the moving and reference samples of the initial
test would consist of the last 10 and first 30 examinees to have been administered the item,
respectively. A randomquarter of the itempool (about 125 items)were queued to be compromised,
each starting at a randomized exposure count between 40 and 100. Any examinee administered
a compromised item had preknowledge with a designated probability of ψ . Defining C as the set
of all compromised items and F as the set of all flagged items, type I error rate and power were
estimated as

P(Type I Error) ≈ P(F |C ′) = P(F ∩ C ′)
P(C ′)

= |F ∩ C ′|
|C ′| , (45)

Power ≈ P(F |C) = P(F ∩ C)

P(C)
= |F ∩ C |

|C | . (46)

If an item in C was prematurely flagged before the designated change point, it was moved to the
uncompromised set C ′ and counted as a type I error. Any flagged item, whether or not in error,
was recorded but otherwise kept operational in the item pool. Additionally, the average lag L̄ from
the change point l j to flag point n j for the set of correctly flagged items (F ∩ C) was calculated
as

L̄ =
∑

j∈F∩C (n j − l j )

|F ∩ C | (47)

to evaluate how quickly compromised items could be detected on average. The performances of
the sequential monitoring procedures were comparatively evaluated on these three criteria instead
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of the average run length (ARL) that is commonly utilized in conventional change-point detection.
The reason is simply that ARL assumes that the sequential process continues ad infinitum until
a significant change is detected, which is clearly not the case in CAT due to a finite number of
examinees. Higher ψ is expected to yield greater power at a given type I error rate, since a higher
prevalence of preknowledge makes it easier to detect. Likewise, smaller m is expected to yield
shorter lag at a given type I error rate, since a smaller moving sample retains less older data that
may act as dead weight.

5. Results

The first set of simulations compared the performances of the five monitoring schemes:
responses alone (R), RTs alone (T), dual univariate 1 (DU-1), dual univariate 2 (DU-2), and
single multivariate (SM). Every technique was evaluated on each of 2 sample sizes (m = 5, 20) at
each of 3 preknowledge probabilities (ψ = 0.15, 0.25, 0.35) for a total of 6 conditions. The results,
which were averaged across 100 replications, are presented as receiver operating characteristic
(ROC) curves in Fig. 2 and lag plots in Fig. 3. Note that the results are only shown up to a type
I error rate of 0.1, since anything beyond that is generally unacceptable in practice. The most
salient observation is that the performances of T, DU-1, and SM were all nearly identical with
the highest power and lowest lag at any given type I error rate. On the contrary, R was worst
by far and DU-2 was somewhere in the middle in terms of general performance. In other words,
R and T were effectively the lower and upper performance baselines, respectively, indicating
that preknowledge RT’s were much easier to detect than preknowledge responses. Consequently,
DU-1 and SM were overwhelmingly dominated by RTs, while DU-2 was evenly influenced by
both responses and RTs. Moreover, for every procedure, lag was shorter for higher ψ and smaller
m, and power was greater for higher ψ regardless of m as expected. However, a closer look at
the ROC curves reveals an interesting pattern: Power was greater for larger m at ψ = 0.35, very
similar for both m = 5 and 20 at ψ = 0.25, and actually greater for smaller m at ψ = 0.15. This
suggested an interaction between ψ and m, which warranted a follow-up study.

The second set of simulations compared the performances of 5 moving sample sizes (m =
2, 5, 10, 20, 30) at each of 6 preknowledge probabilities (ψ = 0.05, 0.10, 0.15, 0.25, 0.35, 0.45)
exclusively for SM. As before, the results were averaged across 100 replications and presented
as ROC curves in Fig. 4 and lag plots in Fig. 5. The particular interaction effect becomes quite
noticeable here: ψ strongly moderated the effect of m on power at any given type I error rate.
For ψ < 0.25, smaller m resulted in greater power, with larger differences in effect for lower
ψ ; at ψ = 0.25,m had no appreciable effect on power; for ψ > 0.25, larger m resulted in
greater power, with larger differences in effect for higher ψ . This phenomenon occurs because
when ψ is very low, there is a dearth of preknowledge responses and RTs. As a result, a smaller
moving sample can more easily isolate them, thereby increasing power even at the cost of larger
sampling error. In the current context, ψ = 0.25 happened to be the point of equilibrium at
which the opposing forces of preknowledge isolation and sampling error balanced out to the same
power for every m. Also, for ψ > 0.25, there were negligible improvements in power for m
greater 5, most likely due to the ceiling effect. On the other hand, moderator effects were not
observed for lag. Just as in the earlier results, lag was always shorter for smaller m and higher
ψ .
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Figure 2.
ROC curves for each of the five sequential procedures (R, T, DU-1, DU-2, SM) across six conditions (m = {5, 20}×ψ =
{0.15, 0.25, 0.35}). Results are averaged across 100 replications with about 500 items and 2000 examinees.
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Figure 3.
Lag plots for each of the five sequential procedures (R, T, DU-1, DU-2, SM) across six conditions (m = {5, 20} × ψ =
{0.15, 0.25, 0.35}). Results are averaged across 100 replications with about 500 items and 2000 examinees.

6. Discussion

Optimistic simulation conditions notwithstanding, the results demonstrate that response times
can be effectively utilized in conjunction with responses to improve the sequential detection of
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Figure 4.
ROC curves for the SM procedure with five moving sample sizes (m = 2, 5, 10, 20, 30) at each of six levels of item
preknowledge (ψ = 0.05 ,0.10, 0.15, 0.25, 0.35, 0.45). Results are averaged across 100 replications with about 500 items
and 2000 examinees.
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Figure 5.
Lag plots for the SM procedure with five moving sample sizes (m = 2, 5, 10, 20, 30) at each of six levels of item
preknowledge (ψ = 0.05 ,0.10, 0.15, 0.25, 0.35, 0.45). Results are averaged across 100 replications with about 500 items
and 2000 examinees.
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compromised items. BothDU-1 and SMwere shown to be equally superior overDU-2 in detection
accuracy and speed. Nevertheless, SM has two distinct advantages over DU-1: First, SM is easier
to implement since only a single process needs to be tracked as opposed to two separate streams.
Second, SM can be seen as a more holistic approach that combines all information into a single
evidentiary criterion instead of cherry-picking the favorable outcome. Choosing an appropriate
moving sample size is a trickier matter, since it depends on the unknown probability that a random
examinee has preknowledge of any given compromised item. Because the optimalm is most likely
unique for every CAT, it must be determined by the user through a series of simulations. This can
be accomplished by first finding the equilibrium point, ψe. If true ψ is believed to be less than
ψe, use m = 2 for best results; otherwise, choose the largest m beyond which there seem to be
insubstantial improvements in power. Once m is determined, an item can be monitored as soon
as n = m + 2. For future study, it may be interesting to allow the moving sample size to vary
over the course of the monitoring process, for instance, in inverse proportion to the item exposure
count.

At this point, a word of caution regarding the interpretation of power would be prudent. It may
be tempting to interpret power as the probability that a flagged item is compromised, or P(C |F),
which would be of primary interest in practice. However, doing so would be committing an
inverse fallacy, recalling that power is actually the probability that a compromised item is flagged,
or P(F |C). Succinctly, power= P(F |C) �= P(C |F); instead, we properly apply Bayes’ theorem
to obtain

P(C |F) = P(F |C)P(C)

P(F |C)P(C) + P(F |C ′)P(C ′)
= Power × P(C)

[Power × P(C)] + [α × (1 − P(C))] . (48)

Note that P(C) is the base rate of item compromise, which is typically unknown. Nevertheless,
to illustrate the substantial impact of the base rate, say we have 90% power at 5% type I error,
but the base rate is relatively low at 5.5%. Then, there is only about a 50% chance that a flagged
item is actually compromised even with such high power. Although somewhat discouraging,
this is a typical phenomenon in diagnostic testing in general, such as in medical screening for
a rare disease. As with any such tool, the sequential detection procedures should be utilized
responsibly, preferably with corroborating evidence of compromise. On a related note, it would
be unwise to settle on a high type I error rate in efforts to afford greater power. Over-flagging
and subsequently deactivating perfectly usable items would be a supreme waste, considering that
items are enormously time-consuming and costly to develop.

There are several issues that have not been explicitly accounted for in this study. First, the
particular lognormal distribution used to model preknowledge RTs is certainly plausible and
suitable for the purposes of this study, but it is admittedly an uninformed choice. Currently, no
empirically supported alternatives have been proposed in literature, most likely due to the paucity
of real RTdata fromexaminees verified to have itempreknowledge. Second, sequentialmonitoring
assumes that the general characteristics of the examinee population are consistent over the course
of item usage. Hence, the simulations did not consider scenarios of drastic changes in response
patterns due to reasons unrelated to item compromise, such as a sudden shift in the demographics
of test-takers. Third, for a given CAT window, the probability of item preknowledge (ψ) was
assumed to be constant across all compromised items and test-takers; moreover, all those with
preknowledge were simplistically simulated to respond correctly with near certainty (99.9%). In
actuality, these probabilities are likely to vary for each examinee-item pair. Fourth, the dependence
between ability and speed may play a role in the performance of the joint detection procedures.
The correlation between θ and τ was 0.77 for the empirical data at hand, but the impact of varying
degrees of association on power and type I error warrants further investigation. Fifth, information
regarding non-statistical considerations, such as content balancing and avoiding enemy items,
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was unavailable for the item pool used in this study. Test constraints add a complex dimension to
item selection and exposure control strategies, which may affect the performance of the detection
methods. Acknowledging all of these various limitations, it would be worthwhile to extend the
models and simulations to reflect the more complex reality. Moreover, empirical studies need to
be conducted to assess the applicability and efficacy of the proposed procedures in practice.

Lastly, development of more powerful tests and efficient techniques are currently underway.
For one thing, the classic Hotelling’s T 2 statistic used in the SM procedure may not be the
most appropriate choice, given that the mean vector is not bivariate normal. Especially at the
beginning of a CAT cycle when there are relatively few examinees, there may exist more suitable
nonparametric tests that can afford greater power. Also, the presented methods only monitor the
sample means of responses and response times. For RTs in particular, the variance is most likely
smaller as well for compromised items. Thus, testing the difference in the empirical distribution
functions (EDF) between the moving and reference samples, using the Kolmogorov–Smirnov or
Kuiper’s tests for instance, might prove to be more powerful since both the location and spread
of the sample distributions are taken into account. Additionally, the detection problem can be
approached from a more traditional sequential analysis framework. More specifically, changes
in response patterns could be monitored via control charts such as CUSUM, or the sequential
hypothesis testing procedure could be framed as a series of generalized likelihood ratio tests
(GLRT). The feasibility of these methods remains to be seen.

Appendix

Application of Lyapunov’s Central Limit Theorem

Assume that log RT is normally distributed as follows: log Ti j ∼ N (μi j , σ
2
j ), where μi j =

β j − τi and σ 2
j = 1/α2

j . The mean log RT of the moving sample for item j is then given as

μ̂
(m)
j = 1

m

∑n
i=n−m+1 log Ti j . Also, define the following: s

2
m = ∑n

i=n−m+1 σ 2
j = mσ 2

j . In this

context, Lyapunov’s CLT states that

1

sm

n∑
i=n−m+1

(log Ti j − μi j ) = μ̂
(m)
j − ∑n

i=n−m+1 μi j/m

σ j/
√
m

d−→ N (0, 1) (A.1)

if, for any δ > 0, the following condition is met:

lim
m→∞

1

s2+δ
m

n∑
i=n−m+1

E
(
| log Ti j − μi j |2+δ

)
= 0. (A.2)

Recognizing that the expectation term is a central absolute moment of log Ti j ,

E
(
| log Ti j − μi j |2+δ

)
= σ 2+δ

j (1 + δ)!! ·
{√

2/π if 2 + δ is odd

1 if 2 + δ is even
. (A.3)
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Therefore, using δ = 2 for simplicity,

lim
m→∞

1

s4m

n∑
i=n−m+1

E
(
| log Ti j − μi j |4

)
= lim

m→∞
1

m2σ 4
j

n∑
i=n−m+1

3σ 4
j

= lim
m→∞

m
(
3σ 4

j

)
m2σ 4

j

= lim
m→∞

3

m
= 0,

thereby meeting Lyapunov’s condition for the asymptotic normality of the test statistic.
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