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Contentbalancing isoneof themost important issues incomputerizedclassification testing.To

adapt to variable-length forms, special treatments are needed to successfully control content

constraints without knowledge of test length during the test. To this end, we propose the

notions of ‘look-ahead’ and ‘step size’ to adaptively control content constraints in each item

selection step. The step size gives a prediction of the number of items to be selected at the

current stage, that is, how far we will look ahead. Two look-ahead content balancing (LA-CB)

methods, onewith a constant step size and anotherwith an adaptive step size, are proposed as

feasible solutions to balancing content areas in variable-length computerized classification

testing. The proposed LA-CB methods are compared with conventional item selection

methods in variable-length tests and are examined with different classification methods.

Simulation results show that, integrated with heuristic item selection methods, the proposed

LA-CB methods result in fewer constraint violations and can maintain higher classification

accuracy. In addition, the LA-CB method with an adaptive step size outperforms that with a

constant step size in contentmanagement. Furthermore, the LA-CBmethods generate higher

test efficiency while using the sequential probability ratio test classification method.

1. Introduction

The computerized classification testing (CCT; Parshall, Spray, Kalohn, & Davey, 2002)

method has been applied in a variety of proficiency tests to classify examinees into two or

more mutually exclusive groups. Different from the computerized adaptive testing (CAT)

method with respect to point estimation of ability, the CCT method does not necessarily

acquire an accurate estimate of ability values (Thompson & Prometric, 2007; Weiss &
Kingsbury, 1984).

For the purpose of further improving test efficiency, variable-length computerized

classification testing (VL-CCT) is adopted (Parshall et al., 2002; Thompson & Prometric,

2007). Variable-length testing refers to tests in which not all examinees receive the same

number of items. Before a decision (pass/fail) is made, an examinee with high or low

ability who is far from the cut-off score will receive a relatively small number of items

compared to an examinee with ability closer to the cut-off score.

The purpose of the VL-CCT method is to provide the decision with as few items as
possible, while maintaining decision accuracy at a certain level. The VL-CCT method is a
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powerful and efficient approach to classifying examinees into groups using variable test

lengths adapted to abilities. It outperforms fixed-length tests in at least three aspects:

offering substantially shorter tests than a conventional fixed-length test whilemaintaining

a similar level of classification accuracy (Kingsbury & Weiss, 1983); conforming to the
‘equal measurement error variance’ with fixed standard error of measurement (SEM) as a

stopping rule (Huo, 2009); and allowing subsequent statistical analyses involving

measurement errors to be easily handled (Thissen & Mislevy, 2000; Wainer, Dorans,

Flaugher, Green, & Mislevy, 2000).

Currently, the VL-CCT method is not as widely adopted as the fixed-length method in

educational and psychological assessments for several reasons. First, it is reported that

extremely short tests can affect examinees’ perceptions of fairness (Huo, 2009;

Tonidandel, Quinones, & Adams, 2002). Second, it is difficult to incorporate all statistical
and non-statistical constraints into a VL-CCT design. In the VL-CCT implementation,

constraints include content balancing, exposure control, answer key balancing, etc.

Content balancing refers to the case where a certain proportion of items needs to be

selected from each content area. Exposure control means that the item exposure rate

should be kept under a specific threshold. Ideally, items should not be over-exposed or

under-exposed, in order to protect test security and maximize item pool usage. Answer

key balancingmeans that correct answers should be uniformly distributed among options

(Chang & Ying, 1999; Cheng & Chang, 2009; Sympson & Hetter, 1985). However, as the
total number of administered items is unknown before a VL-CCT test is terminated,

traditional item selection methods cannot accommodate non-statistical constraints

properly without pre-specifying a content area range.

The importance of content balancing has been demonstrated by many researchers

(Green, Bock, Humphreys, Linn, &Reckase, 1984; Thissen&Mislevy, 2000;Wainer et al.,

2000). A number of methods have been proposed to manage non-statistical constraints,

including the constraint CAT method (Kingsbury & Weiss, 1983), the modified

multinomial model method (Chen & Ankenman, 2004), the modified constraint CAT
method (Leung, Chang, & Hau, 2000), the maximum priority index (MPI) (Cheng &

Chang, 2009), and the content-weighted item selection index (CWI; Huo, 2009). TheCWI

method can be adapted to accommodate constraint management in variable-length tests.

Furthermore, the MPI method was adjusted and introduced in variable-length multidi-

mensional CAT (Su, 2015, 2016; Yao, 2013). However, it is still a challenging task to

control all constraints simultaneously in a variable-length test setting. Thus, it is desirable

to develop new content balancing methods that are specifically designed for variable-

length tests.
In this paper,we address these challenges byproposing two feasiblemethods based on

a new design, named look-ahead content balancing (LA-CB), which gains control over

content coverage in severely constrained VL-CCT programs. Integratedwith theMPI item

selection method, the two LA-CB based methods simultaneously accommodate non-

statistical constraints in VL-CCT. Furthermore, these LA-CB methods are easy to

implement in VL-CCT tests. The LA-CB methods are then compared with the MPI and

CWI methods with respect to their performance in constraint management and

classification accuracy.
The rest of the paper is organized as follows. Four content balancing item selection

methods (including two existing and two newly proposed LA-CB methods) and two

classification methods are presented in the Section 2. The results of three simulations are

summarized in Section 3. Some concluding remarks are made in Section 4, and potential

future research directions are discussed in Section 5.
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2. Methods

The CCT approach built upon item response theory (IRT) with a three-parameter logistic
model (3PLM) (Hambleton & Swaminathan, 1985) is mostly frequently used. The 3PLM

defines the probability of an examinee with ability h answering item j correctly as

PjðX ¼ 1 j hÞ ¼ cj þ ð1� cjÞ eajðh�bjÞ

1þ eajðh�bjÞ ; ð1Þ

where aj is the item discrimination parameter, bj is the item difficulty parameter and cj is

the guessing parameter or a lower asymptote.

One of themostwidely used item selectionmethods in CCT programs is themaximum
Fisher information method (Lord, 1980; Wainer et al., 2000). This selects the next item

with the maximum value of Fisher information evaluated at the current ability estimate

point ĥ. The Fisher information in the 3PLM is expressed as

IjðhÞ ¼
ð1� cjÞa2

j e
ajðh�bjÞ

½1þ eajðh�bjÞ�2f1� cj þ cj½1þ eajðh�bjÞ�g : ð2Þ

Other than maximum Fisher information method, the MPI method measures both the

information each item carries, and the items’ contribution towards meeting constraints.

2.1. Content balancing item selection methods

2.1.1. Maximum priority index

TheMPImethod is a flexible item selection algorithm that incorporates content balancing

constraints in fixed-length CAT. The MPI method heuristically balances constraints in the

item selection procedure by including amultiplier in front of an item’s Fisher information;

and the Fisher information quantifies the contribution to h estimation. Also, the larger the

MPI is, the more desirable it is to administer the item. The priority index of item j is

computed as

PIj ¼ Ij
YK
k¼1

ðxkfkÞcjk ; ð3Þ

where Ij represents the Fisher information of item jwith regard to ĥ. cjk is the indicator for
whether constraint k is relevant to item j, and takes the value 1 if k is relevant, and 0

otherwise. xk is a predefined weight for constraint k, which is used to quantify the

importance of content constraints; that is, major content constraints will receive large

weights.
Suppose that the target number for a certain content constraintk isXk, and that xk such

items have been selected. The resulting scaled quota fk is

fk ¼ Xk � xk

Xk

: ð4Þ

Xk varies over different item selection phases as well as constraints. For example, if
content area k involves a lower bound lk and an upper bound uk, then Xk equals lk in the
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first phase and uk in the second. In variable-length tests, the upper limit is bounded by a

ratio uk% and the maximum test length U, which gives uk = U 9 uk%.

To ensure that a sufficient number of items are administered to examinees and thus a

reliable test, most VL-CCT programs set both lower and upper bounds on total test length,
as well as content area constraints. Therefore, the lower bound of each content area is

handled in the first phase and the upper bound in the second phase.

In particular, the desired exposure rate r can be treated as an upper limit in fk for

exposure control purposes, expressed as

fkr ¼ r� n=N

r
; ð5Þ

where r is the exposure rate upper limit, n counts how frequently item j has been

administered, and N is the total number of examinees.

2.1.2. Content-weighted item selection index

One content balancing control method proposed for variable-length tests is the CWI

method (Huo, 2009). The method incorporates adapted a-stratified methods to control

content constraints in variable-length CAT.

Let lk and uk denote the lower and upper bounds of the constraint k respectively, and

xk denote the number of selected items from the constraint k. The CWI method is
calculated in two phases. In the first phase, the index is expressed as

CWI ¼ lk

lk � xk þ 1
j ĥ� b j: ð6Þ

In the second phase, the index is

CWI ¼ uk

lk � xk þ 1
j ĥ� b j: ð7Þ

To adjust the CWI method in the variable-length setting with exposure control, the
author proposes an adapted a-stratifiedmethod. Themethod selects items from strata in a

circularly increasing or decreasing order in the second phase, instead of in a strictly

ascending or descending order from the original a-stratified item selectionmethod (Chang

& Ying, 1999). This adapted method achieves the best result of all adaptations in Chang

and Ying’s paper. Therefore, wewill continue to use the CWIwith the adapted a-stratified

method as one of reference methods to compare with the newmethods presented below

in our simulation studies.

2.1.3. Look-ahead content balancing

The problem with using existing content balancing methods is that the upper bound of

each content area is unknown before the test is terminated. In VL-CCT programs, each

content balancing constraint usually includes both a lower bound and an upper bound.

The lower bounds are fixed values to ensure sufficient items are administered to

examinees and the reliability of the test. The upper bounds are usually controlled by a

target percentage. As a result, when the total test length is changing, the program cannot
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determine the exact upper bounds. The existing MPI method and the CWI method both

usemaximum upper bounds, which are the total test length times the target percentages,

as the target upper bounds in the second phase. However, the maximum upper bounds

can be much larger than the actual ones since some tests may terminate early. As a result,
the content constraints cannot be controlled properly.

To solve this problem,wefirst proposed a straightforward solution. The upper bounds

are decided by a fixed value called the ‘step size’. By looking one step ahead, the upper

bounds keep determined by the existing number of selected items plus the step size in

each item selection procedure. An alternative method is to determine the step size by a

confidence interval (CI) derived from the Fisher information. The upper bounds are then

decided in the same way.

We introduced the idea of looking ahead by taking one step forward in both methods.
Both of them prove to be reliable in maintaining high test accuracy and content

management. In addition, we can use the flexible values of step size to decide the priority

of achieving higher classification accuracy or fewer constraint violations. Besides, the

Fisher information contributes themeasurewhich further refines the step size’s precision

in determining upper bounds. The resulting VL-CCT program can show its high test

efficiency over fixed-length tests without compromising constraint management.

Specifically, the LA-CB design adopts the idea of a a two-phase item selection strategy

(Cheng & Chang, 2009; Cheng, Chang, & Yi, 2007). It handles lower bounds in the first
phase andupper bounds in the second.Using the samenotation as above, let xkdenote the

number of selected items from content area k. The following equations must be satisfied:

xk � lk; ð8Þ

and

xk �TL� uk%; ð9Þ

where lk is the lower bound for content areak,uk% is the target percentage of content area

k in the second phase andTL is total test length. The priority indexPIj is then computed by

(3).

In the first phase, we have

fk ¼ lk � xk

lk
: ð10Þ

So fk gives the quota of the distance between the lower bound and the current selection

length.

In the second phase, because both the total test length and the total number of items

received by examinees are changing, we should have a solution to determinewhat would

be the remaining length. Theway to go about this is to take one step ahead, by introducing
either a constant value or an adaptive value determined by the CI. We call the value the

step size, S. Suppose the maximum test length is U, which is larger than or equal to the

actual test length TL. Then the target percentage uk% must satisfy

xk þ S� uk%�U� uk%; ð11Þ

which gives
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1� S�U�
XK
k¼1

xk: ð12Þ

Inequalities (11) and (12) indicate that the number of selected items plus S cannot

exceed maximum test length in VL-CCT programs. Besides, if the test is still in

progress (i.e., the maximum test length is not reached and the termination criterion

has not satisfied), at least one item should be selected, in which case the value of S

is at least 1. Therefore, the step size S can be a constant integer within the range

given by (12). We refer to the LA-CB method with constant step size S
constant as LA-

CB-C.

To further improve the precision in determining the upper bound, we used the ability
confidence interval (ACI) method to predict the step size S. By evaluating the distance

between the current Fisher information and desired Fisher information, the value of S is

calculated. As a result, constraints under each content area can better controlled. The

method is referred to here as LA-CB-A.

By theACImethod, a CI, based on ĥ and the conditional standard error ofmeasurement

SEM, will be constructed and compared to the cut-off score. A CI is expressed as

ĥ� Za � SEM\h\ĥþ Za � SEM; ð13Þ

where Za is the normal deviate for a 100(1 � a)% CI.

To estimate SEM, by the central limit theorem, under local independence and large n

assumptions, we have

SDðĥÞ ! 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1 IjðhÞ

q ; as n ! 1; ð14Þ

where Ij(h) represents the Fisher information of item j. After the first k items have been
administered, the CI is approximated b

ĥ� Za
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
j¼1 IjðhÞ

q \h\ĥþ Za
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
j¼1 IjðhÞ

q : ð15Þ

Since the LA-CB-A method is applied in the second phase, at least lk items have already

been administered. The number of items is large enough that the accumulated Fisher

information can be used to approximate SEM.

Denote the cut-off score by h0. If the lower bound of the CI equals h0, the entire CI will

lie to the right of h0, leading to the classification of passing the test under the ACI method,

where

h0 ¼ ĥ� Ze
1ffiffiffiffiffiffi
FI0

p : ð16Þ

In contrast, if the upper bound of the CI equals h0, the entire CI will lie to the left of h0,
which gives
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h0 ¼ ĥþ Ze
1ffiffiffiffiffiffi
FI0

p : ð17Þ

The test will terminate and the examinee will be classified as failing the test.

Both equations (16) and (17) give the same total desired Fisher information FI0 to the

terminated test which is calculated as

FI0 ¼ Ze

h0 � ĥ

� �2
: ð18Þ

Therefore, the number of items to be selected in the next steps has the range

FI0 �
Pk

j¼1 IjðĥÞ
maxðIunselectedÞ \no. of items\

FI0 �
Pk

j¼1 IjðĥÞ
minðIunselectedÞ ; ð19Þ

where max(Iunselected) and min(Iunselected) represent the maximum and minimum Fisher

information based on current ĥ, respectively, for an item in the remaining item pool.

To conservatively control content constraints, the predicted number of remaining

items should be as small as possible. Therefore, the LA-CB-Amethod uses the left bound in

(19) as the look-ahead upper bound. The adaptive step size will be calculated as

S
adaptive
0 ¼ FI0 �

Pk
j¼1 IjðĥÞ

maxðIunselectedÞ �
XK
k¼1

xk: ð20Þ

When the test is in a relatively early stage, the standard error of estimated ability is large

and the accumulated Fisher information is not yet close to FI0. As a result, the adaptive step

size S
adaptive
0 can be very large. To take advantage of S

adaptive
0 while having it controlled in a

reasonable range, we integrated S
adaptive
0 with the constant step size Sconstant. The resulting

S
adaptive in the LA-CB-A method is calculated by

S ¼ minfSadaptive0 ; Sconstantg: ð21Þ

With the step size S for either the LA-CB-C or LA-CB-Amethod, the quota fk is calculated

by

fk ¼ S� uk%

xk þ S� uk%
: ð22Þ

The priority index is calculated by (3) for each item j and the itemwith theMPI is selected

and administered.

FI0, S, and fk are iteratively predicted andupdated and items are administered following

the same procedure until the termination criterion is satisfied or themaximum test length
is reached. Examinees are classified as pass/fail based on the classification criterion if the

test terminates before the maximum test length is reached. Otherwise, examinees

are classified based on the comparison between the estimated ability ĥ and the cut-off

score h0.

Look-ahead content balancing method 7



2.2. Classification methods

2.2.1. Sequential probability ratio test

The sequential probability ratio test (SPRT) (Eggen, 1999; Wald, 1947) turns out to be to

be a reliablemethod in the adaptive test for classifying examinees into categories (Eggen&

Straetmans, 2000; Spray & Reckase, 1996). It compares the ratio of the likelihoods of two

competing hypotheses. In CCT programs, the likelihood is calculatedwith the probability

of an examinee’s response to item i, given the true hypothesis. The probability is
calculated with an IRT item response function.

For the purposes of this approach, the statistical hypotheses are formulated as

H0 : h� h0 � d ¼ h1 ð23Þ

against

H1 : h� h0 þ d ¼ h2; ð24Þ

where d is the indifference zone, accounting for the uncertainty of decisions due to

measurement error. The value h is close to the true ability measure h0.
Acceptable decision error rates are then specified as

Pðaccept H0 j H0 is trueÞ� 1� a; ð25Þ

and

Pðaccept H0 j H1 is trueÞ� b; ð26Þ

where a and b are the nominal Type I and Type II error rates, respectively.

Testsmeeting these decision error rates are then implemented using the SPRT. The test

statistic used is the ratio between the values of the likelihood functions under the

alternative hypothesis and the null hypothesis,

LRðh2; h1;yÞ ¼ Lðh2;yÞ
Lðh1;yÞ ¼

QK
j¼1 Pjðh2Þyj ½1� Pjðh2Þ�1�yjQK
j¼1 Pjðh1Þyj ½1� Pjðh1Þ�1�yj

; ð27Þ

where y denotes responses y1, y2, . . ., yK andK denotes the total number of items. Pj(h) is
the item response function of the 3PLM from equation (1). Large values of this ratio

indicate that the examinee’s h is above h0, and small values indicate that h is below h0. That
is, a statistical test satisfies acceptable decision error rates if it uses the following

procedure (Eggen, 1999): if

b
1� a

\LRðh2; h1;yÞ\ 1� b
a

; ð28Þ

the sampling procedure continues; if

LRkðh2; h1;yÞ� b
1� a

; ð29Þ

we accept H0 and classify the examinee as failing in the test; if
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LRkðh2; h1;yÞ� 1� b
a

; ð30Þ

we reject H0 and classify the examinee as passing the test.

2.2.2. Ability confidence interval

The ACI method is an alternative way to make a classification decision. A 95% CI is

constructed around the examinee’s estimated theta after each item administered. If the

examinee’s 95%CI is above the cut-off score h0, then the examineepasses the test. If theCI

falls below h0, then the examinee fails. If h0 is equal to or within the examinee’s CI, then
the test will continue until a pass/fail decision can be made or the maximum test length is

reached.

3. Simulation studies and results

3.1. Overview
Three simulation studies were conducted for this paper. In the first simulation study,

the evaluation between the ACI and SPRT methods is based on classification accuracy

and test efficiency criteria in the application of the LA-CB-C method. The main

purpose of the first study is to choose a preferable classification method in the

current setting so that the preferred one would be applied in the following two

simulation studies. Only the results of LA-CB-C method are presented in paper article

since the LA-CB-A method produces similar results. In the second simulation study,

we evaluate whether the LA-CB-C method controls content constraints better than the
existing MPI and CWI methods in VL-CCT tests, where baselines are taken to be the

MFI without exposure control and the randomized method. The comparisons are

conducted with respect to multiple perspectives, including classification accuracy,

test efficiency, content balancing and exposure control. In the third simulation study,

we examine whether the LA-CB-A method further improves the content balancing

performance on top of the LA-CB-C method. Details of the settings and the results of

the three studies are discussed in the following subsections.

3.2. Data generation

3.2.1. Item pool structure

A hypothetical item bank is simulated under the 3PLM with 400 items, partitioned into

four stageswith parameter a evenly distributed at 0.5, 1.0, 1.5, 2.0. Other itemparameters

are generated as b ~ N[0, 1] and c � U[0, 0.25]. The item bank is evenly divided into

four content areas, each of which contains 100 items. Each content area is assumed with

25% desired selection rate. The four content areas are considered equally important and

theweights are all set to 10. Theminimum andmaximum test lengths are set at 28 and 60.

Therefore, for each content area, the number of selected items under each constraint k

(k = 1, 2, 3, 4) should be bounded between integers 7 and 15.
As for test security purposes, the exposure rate of all items is required to be controlled

under 0.2, which means items are administered to no more than 20% of examinees. The

constraint is expressed in equation (5). Because the simulated test is considered high-

stakes, the weight of the exposure control constraint is set to 100.

Look-ahead content balancing method 9



3.2.2. Examinee generation

We drew 2,000 hs from N[0, 1] as our simulated examinees. In order to mitigate the

randomness in the results, 20 replications were performed for each of the 18 step

sizes of the LA-CB-C and LA-CB-A methods, and for each of the other four item
selection methods, using the same item bank and generated examinees in the second

and third simulation studies. The averaged results were presented. The pass rate of

the test is taken to be 50%.

3.2.3. Model settings

The indifference region d for SPRT method is set to 0.2. The cut-off score for h0 is 0.

As a result, h1 and h2 are �0.2 and 0.2, respectively. Parameters a and b for SPRT are
set to 0.05. In addition, 18 integral values are generated for the step size S in the LA-

CB methods, ranging from 3 to 20. As S should be bounded in the range given by (12)

in both LA-CB-C and LA-CB-A methods, in the later stage of the test, the constant step

size we generate, S
constant, may exceed U�PK

k¼1 xk as more and more items are

selected. The actual step size S
actual that we use in the study is calculated by S from

the LA-CB-C and LA-CB-A as

Sactual ¼ max 1;min S;U�
XK
k¼1

xk

( )( )
; ð31Þ

where S = S
constant in LA-CB-C and S = S

adaptive in LA-CB-A.

At the beginning of the test, the first three items are always selected randomly because

we lack the knowledge to compute the Fisher information. The following items are

selected from the two best items, where the best item refers to the one with maximized
priority index, Fisher information, or minimized weighted index, depending on which

method is used.

3.3. Evaluation criteria

Various criteria are used to analyze and compare the two newly proposed methods with

traditional methods. Results are evaluated based on the following fourmain aspects. Note

that the last criterion is for the first simulation study only.

1. Classification accuracy. Three criteria are used for classification accuracy compar-

ison in the simulations: classification error rate (CER), Type I error rate (Type I ER)

and Type II error rate (Type II ER). Meanwhile, mean square error is also calculated as

a measurement precision criterion, given by

MSE ¼
PN

i¼1ðĥi � hiÞ2
N

ð32Þ

2. Content balancing. The total numbers of violated content constraints across various

examinees are evaluated as a criterion for content balance. Denote by Vi the total

number of constraints violated in all content areas for examinee i. The average

number of constraints violated in a test is calculated by

10 Xiao Li et al.



�V ¼
PN

i¼1 Vi

N
; ð33Þ

where N denotes the total number of examinees (which equals 2,000). The average

value of �V across different examinees, the maximum �V andminimum �V are given for

comparison. The grand average �V is defined as

Average �V ¼
PP

p¼P0
�Vp

P� P0 þ 1
; ð34Þ

where �Vp denotes the average number of constraints violated for the pth step size and

P0 andP denote respectively theminimum andmaximum step sizeswe generated for

LA-CB-C and LA-CB-A models. Maximum and minimum �V are also calculated across
different step sizes.

3. Exposure control. Four criteria are used for the purpose of evaluating exposure

control across five different methods. They are themaximum item exposure rate, the

proportion of over-exposed items (items with exposure rate higher than 0.2), the

proportion of unused items, and v2. v2 is designated to measure the similarity

between observed and expected exposure rates (ER),

v2 ¼
XK
j¼1

ðERj � ERÞ2
ER

; ð35Þ

where j denotes the jth item, K denotes the total number of items, and ER shows the

average exposure rate of all the items in the pool.

4. Test efficiency. To compare the test efficiency between two classification methods

(ACI and SPRT) in the first study, the average test lengths TL across various examinees
are calculated, conditioning on different step sizes. TL is expressed as:

TL ¼
PN

i¼1 TLi

N
; ð36Þ

where TLi denotes the test length for the ith examinee and N = 2,000 is the total

number of examinees.

3.4. Results of simulation 1

The ACI and SPRT classification methods are adopted with the LA-CB-C method and

compared for classification accuracy and test efficiency. The classification accuracy

includes the CER, Type I ER and Type II ER. Therefore both the classification specificity

and sensitivity can be shown. A reliable classification method is expected to provide both

low classification error rate and short average test length.
The focus of the first study is to find out the most appropriate classification method,

which is a critical part of the VL-CCT design so that LA-CB methods can be further

investigated on top of the recommended method. The classification method with the

better performance is applied in the following two studies.
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Table 1 gives a comparison of classification accuracy and test efficiency between the

SPRT and ACImethods. The average test lenth shows their performance in improving test

efficiency with the benefit of variable length setting. While the average test length with

the SPRT method is 29.8, that with the ACI method is 37.1. With SPRT as the termination
criterion, the average test length is 19.6% shorter than with ACI. Figure 1 compares total

test lengths between the two methods conditional on 18 step sizes. In addition, 18 one-

way ANOVA tests were run to compare the test lengths generated by the ACI and SPRT

methods conditional on 18 step sizes. All p-values were reported to be less tgan than

2 9 e�16, indicating that the test lengths generated by the ACI and SPRT methods are

significantly different.

The second row in Table 1 gives the average number of constraints violated in tests

( �V ). The value is 0.011 with SPRT and 0.017 with ACI. The result accords with the result
given for test length in Table 1 and Figure 1, since the ACI method tends to give a longer

test so there is a higher probability of constraint violation.

The last part of the table presents the overall CERs of the two methods. The ACI

method gives a slightly better performancewith 6.0%error rate,while SPRThas 6.3% error

rate on classifying examinees. The difference of the average CERs between the ACI and

SPRT methods is thus only 0.3%. Figure 2 presents the CERs of the two methods

conditional on 18 step sizes, while Figures 3 and 4 give corresponding Type I and Type II

ERs. The fluctuations of the curves are due to randomness from the test setting. Items are
selected randomly from the two best ones, and ability estimation errors also result in

randomness in item selection procedure. In general, the differences in CERs between the

Table 1. Overall performance of sequential probability ratio test (SPRT) and ability confidence

interval (ACI) classification methods

Methods SPRT ACI

Avg. test length TL 29.85 37.11

Grand avg. violated constraints �V 0.011 0.017

Average classification error rate 0.063 0.060

Average Type I error rate 0.033 0.030

Average Type II error rate 0.030 0.030

Figure 1. Average test length (TL) of sequential probability ratio test (SPRT) and ability confidence

interval (ACI).
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two methods across 18 step sizes are quite small. The results show that similar

classification accuracy is achieved by the two methods.

The results given in Table 1 and Figures 1–4 clearly show that SPRT improves test

efficiency by shortening the test length by 19.6% without losing much capacity to

maintain high classification accuracy, which is 93.7% here. A similar conclusion that SPRT

tends to gives a better performance in CCT can be found in otherwork (Babcock&Weiss,
2009; Lin, 2011; Thompson, 2009) as well. Thus, SPRT is shown to be an efficient

classification method which is used in simulations 2 and 3 for a further evaluation of the

LA-CB methods.

3.5. Results of simulation 2

Eighteen step sizes are generated for a comparison of the LA-CB-C method with the CWI,

MPI and the baseline of MFI and randomized item selection method. The influence of
different step sizes will be evaluated from different perspectives mentioned above. The

SPRT is adopted here as the classification method.

Since the LA-CB-C method is designed as a content balancing item selection method

without sacrificing classification accuracy, criteria including classification accuracy,

Figure 2. Classification error rate (CER) of sequential probability ratio test (SPRT) and ability

confidence interval (ACI).

Figure 3. Type I error rate (ER) of sequential probability ratio test (SPRT) and ability confidence

interval (ACI).

Look-ahead content balancing method 13



content balancing and exposure control are recorded for comparison. We replicated the

simulation 20 times and averaged the resulting values to give a reliable result.

Figures 5 and 6 present the CERs and the numbers of constraints violated across

different step sizes with the LA-CB-C method. The trendline is a linear regression line

which gives the linear trend of those two. Obviously, as the step size increases, the

classification accuracy rate improves slightly, with error rate decreasing (see Figure 5).

At the same time, the number of violated constraints increases greatly with larger step

sizes (see Figure 6). There clearly exists a trade-off between classification accuracy and
content balancing regarding different step sizes. With a decreasing step size, content

constraints of selected items can be better controlled, with a slight loss of classification

accuracy.

Table 2 and Figure 7 present the classification accuracy achieved by the LA-CB-C

method for 18 step sizes and the MPI and CWI methods, compared to the baseline of MFI

and randomized item selection methods. The results show that the randomized method

has the highest CER, the MFI method has the lowest, while the CERs of the LA-CB-C, MPI

and CWImethods lie in between. The average CER of the LA-CB-Cmethod is 6.4%, slightly
higher than theMPImethod’s 6.2% butmuch lower than the CWImethod’s 7.8%. There is

no obvious optimum step size that achieves the lowest error rate. CERs of the LA-CB-C

method under different step sizes all lie within the range 6.2–6.6%.

Figure 4. Type II error rate (ER) of sequential probability ratio test (SPRT) and ability confidence

interval (ACI).

Figure 5. The LA-CB-C method classification error rate (CER) with linear trendline.
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Meanwhile, Figure 6 shows that the average number of constraints violated ( �V ) in the

LA-CB-C method with different step sizes is always under 0.040, while �V for the MPI

method is 0.054, the MFI method is 8.14, the CWI method is 2.23 and the randomized

method is 7.02 (see Table 5). In particular, with step size from 3 to 10, the LA-CB-C

method has no constraint violation. Even with step size 20, which has the highest �V , the

LA-CB-C method still performs better on constraint management than the other four

Figure 6. Average number of constraint violations ( �V ) of the LA-CB-C method with spline

trendline.

Table 2. Classification error rates (ER) and mean square error (MSE) of the LA-CB-C method and

three other methods for 18 step sizes S

S CER Type I ER Type II ER MSE

3 0.064 0.034 0.030 0.074

4 0.062 0.033 0.030 0.074

5 0.064 0.033 0.031 0.075

6 0.065 0.034 0.031 0.075

7 0.065 0.033 0.031 0.075

8 0.065 0.033 0.032 0.074

9 0.062 0.033 0.030 0.075

10 0.065 0.034 0.031 0.076

11 0.064 0.032 0.032 0.075

12 0.066 0.034 0.031 0.075

13 0.063 0.033 0.030 0.075

14 0.063 0.033 0.030 0.075

15 0.066 0.034 0.032 0.075

16 0.064 0.033 0.031 0.074

17 0.063 0.033 0.030 0.075

18 0.063 0.033 0.030 0.075

19 0.064 0.032 0.032 0.075

20 0.063 0.033 0.030 0.075

LA-CB-C average 0.064 0.033 0.031 0.075

Maximum priority 0.062 0.032 0.030 0.074

Content-weighted 0.078 0.040 0.039 0.118

Maximum information 0.054 0.032 0.022 0.054

Randomized 0.084 0.042 0.042 0.254
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methods. This shows that the LA-CB-C method significantly improves content balancing

compared to the MPI and CWI methods.

Table 3 shows that the exposure rate is well controlled by both the LA-CB-C and MPI

methods, especially comparedwith theMFImethod. Themaximum exposure rates of the
LA-CB-C and MPI methods are both under 0.2, and all items in the pool are used.

The results show that the LA-CB-C method has classification accuracy comparable to

the MPI and MFI methods, better than the CWI method. In addition, the LA-CB-C method

generates far fewer violated constraints than the other four methods, while exhibiting

similar exposure control performance with the MPI method but better than the CWI, MFI

and randomized methods. The results indicate that from the content constraint

management perspective, the LA-CB-C method outperforms all the other methods.

Table 3. Overall exposure control indices

Methods LA-CB-C

Maximum

priority Content-weighted

Maximum

information Randomized

Max. exposure rate 0.178 0.175 0.166 0.532 0.100

Over-exposed (%) 0 0 0 3.2 0

Never exposed (%) 0 0 0 0 0

v2 20.297 20.228 4.009 83.041 0.153

Table 4. LA-CB-A classification error rates (ER) and mean square error (MSE) for different step

sizes S

Constant S CER Type I ER Type II ER MSE

3 0.065 0.034 0.031 0.076

4 0.063 0.032 0.031 0.076

5 0.064 0.034 0.030 0.076

6 0.064 0.033 0.031 0.075

7 0.062 0.032 0.030 0.075

8 0.064 0.033 0.031 0.074

9 0.065 0.033 0.031 0.076

10 0.063 0.033 0.031 0.073

11 0.065 0.033 0.031 0.074

12 0.062 0.032 0.030 0.074

13 0.066 0.034 0.032 0.075

14 0.063 0.034 0.029 0.074

15 0.063 0.032 0.031 0.076

16 0.064 0.033 0.031 0.074

17 0.064 0.033 0.031 0.074

18 0.062 0.032 0.030 0.075

19 0.064 0.033 0.030 0.074

20 0.064 0.033 0.031 0.075

LA-CB-A average 0.064 0.033 0.031 0.075

Maximum priority 0.062 0.032 0.030 0.074

Content-weighted 0.078 0.040 0.039 0.118

Maximum information 0.054 0.032 0.022 0.054

Randomized 0.084 0.042 0.042 0.254
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3.6. Results of simulation 3

The LA-CB-A method is designed to improve the LA-CB-C method in terms of meeting the

content constraints. The criteria to compare the LA-CB-A and LA-CB-C methods include

classification accuracy, content balancing, and exposure control. The simulation was
replicated 20 times and the results are summarized in Tables 4 and 5 and Figures 7 and 8.

The adaptive step size is used in the LA-CB-A method, expected to better control the

content area constraints based on the LA-CB-C method. Table 4 and Figure 7 show the

classification accuracy of the LA-CB-A method compared to other methods. The average

CER of the LA-CB-A is 6.4%, the same as that of the LA-CB-C method, close to the MPI

method, slightly higher than the MFI method, and much lower than the CWI and

randomized methods.

Table 5 and Figure 8 present the overall content balancing performance achieved by
the LA-CB-C and LA-CB-A methods, compared to the other four methods. Obviously, the

LA-CB-C and LA-CB-A methods both outperform other methods, while the LA-CB-A

method has the smallest average �V (see Table 5). Looking in detail at the twomethods for

different step sizes, the LA-CB-Amethod controls �V better than the LA-CB-Cmethod (with

smaller �V ), especially when the step size gets larger. This makes sense since more

constraints tend to be violated when the step size gets larger, while the LA-CB-A method

gives a look-ahead prediction of the test length with an adaptive step size, which is no

larger than the constant step size in LA-CB-C. It is also worth noting that both the LA-CB-C

Table 5. Summary of content constraint violations (�V)

Measures Average �V Max �V Min �V

LA-CB-C 0.0110 0.0370 0

LA-CB-A 0.0102 0.0319 0

Maximum priority* 0.0540 – –
Content-weighted* 2.2295 – –
Maximum information* 8.1380 – –
Randomized* 7.0230 – –

Note. This table summarizes the statistics of �V for 18 step sizes.Methodswith (*) do not include step
sizes to make item selections and therefore maximum and minimum �V are not applicable.

Figure 7. Classification error rate (CER) of the LA-CB methods with constant (Constant S) and

adaptive (Adaptive S) step sizes andmaximumpriority (MPI), maximumFisher information (Max FI)

and content-weighted (CWI) methods.
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and LA-CB-A methods control constraints almost perfectly when the step size is smaller

than 11 (Figure 8). Table 6 shows that the LA-CB-A method also controls the exposure

rate very well and is comparable to the LA-CB-C method.

The results show that the LA-CB-Amethod doesmanage constraints better than the LA-

CB-C method with high classification accuracy and low exposure rate. The LA-CB-A

method improves the control of content constraints significantly, especially for larger step

sizes, and gives perfect constraint management for small step sizes.

4. Conclusion

The results reported in the preceding section indicate that the proposed LA-CB methods

with SPRT are promising solutions to content constrained VL-CCT tests. First, the results

show that the LA-CB methods perform better than the CWI and MPI methods in
controlling constraints (e.g., content area constraints and exposure rate), while still

maintaining high classification accuracy. Second, with adaptive step sizes, the trade-off

between the classification accuracy and constraint management can be alleviated.

Specifically, the LA-CB methods reduce the number of constraint violations without

sacrificing classification accuracy. Third, both the LA-CB-C and LA-CB-A methods are

flexible and easy to implement in practice.

The VL-CCT program shows its advantages in improving test efficiency and accuracy.

Yet, due to the lack of information on test length, the non-statistical constraints are hard to
control, which is very different from the fixed-length CCT program. Now with the

proposed LA-CB methods, it is possible to control content constraints and achieve high

classification accuracy simultaneously. As such, the VL-CCT approach can play a more

important role in future large-scale tests.

Table 6. Overall exposure control indices

Methods LA-CB-C LA-CB-A

Maximum exposure rate 0.178 0.178

Over-exposed (%) 0 0

Never exposed (%) 0 0

v2 20.297 20.289

Figure 8. Average number of content constraint violations ( �V ) of the LA-CBmethodswith constant

(Constant S) and adaptive (Adaptive S) step sizes.
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5. Future directions

There are several interesting research directions that are worth exploring in the future.
Firstly, different stopping rules can be evaluated and optimally determined, and the LA-CB

methods can be adjusted based on the preferred stopping rule (Babcock&Weiss, 2009). It

is worth examining whether the LA-CB methods can be further improved with other

termination criteria including the SPRT stopping rule (van Groen, Eggen, & Veldkamp,

2016), the generalized likelihood ratio (Thompson, 2011), the fixed SEM stopping rule

(Choi, Grady,&Dodd, 2011), the information stopping rule (Chang&Ying, 2004), and the

projection-based stopping rules (Luo, Kim, & Dickison, 2018).

Secondly, a variation of the LA-CB method integrated with the shadow test
approach (van der Linden, 1998) shall be investigated. Different methods dealing with

content constraints are proposed and examined using the shadow test approach in

fixed-length CAT (van der Linden, 2009; van der Linden & Chang, 2003). To this end,

it could be helpful to examine a modified LA-CB method combined with the shadow

test approach in a variable-length test setting and compare it with the LA-CB methods

proposed in this paper.

Thirdly, it would also be interesting to examine how the LA-CB methods work when

integrated with other item selection methods including the variable-length modified
multinomial model method (Chen & Ankenman, 2004), the content-weighted item

selection indexmethod (Huo, 2009), and a-stratifiedmethod (Chang, Qian, & Ying, 2001;

Chang & Ying, 1999). The LA-CB methods could also be extended to multidimensional

CAT and examined with existing constraint management methods (Born & Frey, 2017).

The adjusted LA-CB methods could be analyzed and compared with other traditional

constrained item selection methods from the perspectives of measurement precision,

constraint management and exposure control.
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