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Under the generalizability-theory (G-theory) framework, the estimation precision
of variance components (VCs) is of significant importance in that they serve as the
foundation of estimating reliability. Zhang and Lin advanced the discussion of non-
additivity in data from a theoretical perspective and showed the adverse effects of
nonadditivity on the estimation precision of VCs in 2016. Contributing to this line of
research, the current article directs the discussion of nonadditivity from a theoreti-
cal perspective to a practical application and highlights the importance of detecting
nonadditivity in G-theory applications. To this end, Tukey’s test for nonadditivity is
the only method to date that is appropriate for the typical single-facet G-theory de-
sign, in which a single observation is made per element within a facet. The current
article evaluates the Type I and Type II error rates of Tukey’s test. Results show that
Tukey’s test is satisfactory in controlling for falsely detecting nonadditivity when the
data are actually additive and that it is generally powerful in detecting nonadditiv-
ity when it exists. Finally, the article demonstrates an application of Tukey’s test in
detecting nonadditivity in a judgmental study of educational standards and shows
how Tukey’s test results can be used to correct imprecision in the estimated VC in
the presence of nonadditivity.

Generalizability theory or G theory (Brennan, 2001; Cronbach, Gleser, Nanda, &
Rajaratnam, 1972; Shavelson & Webb, 1991) conceptualizes observed measurement
variability as a combination of the true variation in the objects of measurement, other
measurement variation(s) that are anticipated by or of interest to an investigator, and
random error. For example, in an essay exam on some scientific knowledge for a
group of students, the object of measurement is students’ knowledge in science, and
a potential source of measurement variation (i.e., facet in G-theory terminology) is
score variability introduced by different raters scoring the essays. Ideally, one would
like to see true differences in students’ scientific knowledge reflect observed score
variability as much as possible, not differences among rater severity/leniency. In ad-
dition to gauging how much observed measurement variability is explicable by dif-
ferent measurement facets, G theory has been widely used in the analysis of measure-
ment reliability in large-scale assessment contexts (Brennan, 2000; Brennan, Gao, &
Colton, 1995; Gao, Shavelson, & Baxter, 1994; Lee & Kantor, 2007; Shavelson,
Baxter, & Gao, 1993) and in classroom-assessment contexts (Gebril, 2009; Huang &
Foote, 2010; Sudweeks, Reeve, & Bradshaw, 2004).

It is noteworthy that in many applications of G theory, the objects of measure-
ment are persons (e.g., student performance on an essay exam); nevertheless, there
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were many other G-theory applications where the measurement was made on ob-
jects other than persons, such as test items and performance standards. For example,
in a standard setting study, test-centered procedures may be used to determine cut
scores based on raters’ judgments on each item in a test. Researchers have used G
theory in this context to assess the relative contributions of measurement facet(s)
to the variability of raters’ judgments on test items (Brennan & Lockwood, 1980;
Clauser, Margolis, & Clauser, 2014; Clauser et al., 2008; Yin & Sconing, 2008).
Another example is research motivated in part by the mandate, under the No Child
Left Behind Act (2002), to conduct content alignment studies for English language
learners (ELLs) in the U.S. K-12 setting. Researchers in this context (Lin & Zhang,
2014) have used G theory to investigate the reliability of raters’ ratings of the cog-
nitive complexity associated a set of language performance standards; that is, the
performance standards were the objects of measurement.

In this article, we purposefully direct our discussion of G-theory applications to
cases where the objects of measurement are performance standards, because situ-
ating the discussion in this way is consistent with our empirical study design (i.e.,
ELL content alignment research) presented later in the article. However, the utility
of results in this article is not limited to performance standards as the objects of mea-
surement; rather, the results are applicable to any types of objects of measurement
under the G-theory framework. Regardless of the types of objects of measurement,
studies with G-theory applications are concerned with the replicability or generaliz-
ability of results from measurement procedures.

Single-Facet Design in G Theory

In a G-theory design, an observed measurement is a linear function of the main
and interaction effects of standards, facet(s), and errors. For example, a single-facet
(s × r ) design takes the following linear model:

Xsr = μ + αs + βr + εsr,e, (1)

where the rating (e.g., observed measurement on some rating scale) (Xsr) of standard
s given by rater r is the sum of an overall mean rating (μ) and the three random ef-
fects pertaining to standards, raters, and errors, where αs ∼ N (0, σ2

s ), βr ∼ N (0, σ2
r ),

and εsr,e ∼ N (0, σ2
e), respectively. The overall mean rating can be considered as the

average rating of all the objects of measurement (i.e., standards) on the rating scale.
The standard effect (αs) reflects the relative rating standing of a standard compared to
the overall mean rating, while the rater effect (βr ) corresponds to the relative severity
of a random rater compared to a rater with average rating severity from the universe
of admissible raters.

In a typical rater-mediated measurement, each object of measurement (e.g., person
or standard) is repeatedly rated across some or all raters and is rated once per rater;
as a result, the object-of-measurement-by-rater interaction is confounded with the
random error, and both the interaction and random-error terms are subsumed under
the error component (εsr,e). It is data with this single-observation-per-cell layout that
is typical of G-theory applications. Current G theory assumes additivity such that
“all effects in the model are uncorrelated” (Brennan, 2001, p. 23). An example of the
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additive assumption is that the three effects of standards, raters, and errors in Model
(1) are not correlated with one another.

As will be shown later, when the assumption of additivity is met such that all
the effects are uncorrelated, the two confounding terms (i.e., interaction and random
error) within the error component do not need to be assessed separately in the estima-
tion of variance components. However, when some or all of the three random effects
in Model (1) are correlated, the model becomes nonadditive, and the confounding
nature of the error component then introduces additional complications in estimat-
ing variance components because the random-error term now needs to be estimated
independently of the interaction term (Zhang & Lin, 2016). In both the additive and
nonadditive models, the random-error component is uncorrelated with or indepen-
dent of the other components. The difference between the additive and nonadditive
models is that the interaction component is uncorrelated with any components in the
additive model, whereas it is correlated with the objects of measurement, the rater
effect, or both in the nonadditive model.

Statistically, the distinction between additive and nonadditive models is of great
importance in that formulas for variance component estimates differ depending on
the nature of the models (see Scheffe, 1999). However, the difference between ad-
ditivity and nonadditivity is not adequately discussed in the G-theory literature, and
hence the identification of potential nonadditivity in data is typically overlooked in
G-theory applications. This article attempts to advance the discussion of nonadditiv-
ity in G theory and more importantly highlights the importance of detecting nonad-
ditivity in G-theory applications.

Nonadditivity

The discussion of nonadditivity has been noted in the literature of analysis of
variance (ANOVA) regarding data with a single-observation-per-cell design (Davis,
2002; Myers, 1979; Scheffe, 1999). Myers (1979) alluded to the fact that accurate
estimation of variance components cannot be achieved with the presence of nonaddi-
tivity. In view of the advantages of working with additive data, Anscombe and Tukey
(1963) proposed procedures that transform nonadditive data sets into additive ones.
As a caveat of preliminary data scrutiny, Scheffe (1999) suggested that it would be
helpful to examine the observed variance component for errors, such that a relatively
large value may suggest nonadditivity and/or violations of other ANOVA assump-
tion(s). Zhang and Lin (2016) introduced an additivity index, measuring the degree
to which additivity assumption holds in data. The larger the index is, the larger the
magnitude of additivity would be, and hence the smaller the degree of nonadditivity.
By incorporating this index into the G-theory framework, the authors also developed
nonadditive G theory for one-facet measurement designs.

Given that the use of G theory leans heavily on ANOVA techniques in estimat-
ing variance components and that data associated with G-theory applications usu-
ally follow the single-observation-per-cell layout, potential issues with nonadditivity
should deserve more attention from G-theory users. In relation to Model (1), Table 1
illustrates the difference between additivity and nonadditivity by presenting for-
mulas for estimated variance components in a one-facet additive G-theory model
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Table 1
Estimated Variance Components for One-Facet (s × r) Additive and Nonadditive Models

Additive Model Nonadditive Model

Standard (s) σ̂2
s = MSs−σ̂2

sr−σ̂2
e

nr
σ̂2

s = MSs−σ̂2
e

nr

Rater (r) σ̂2
r = MSr −σ̂2

sr−σ̂2
e

ns
σ̂2

r = MSr −σ̂2
sr−σ̂2

e
ns

Error (sr, e) σ̂2
sr,e = MSsr,e = σ̂2

sr + σ̂2
e σ̂2

sr,e = MSsr,e = σ̂2
sr + σ̂2

e

Note. MS refers to observed mean squares.

(see Shavelson & Webb, 1991, pp. 28, 29) and for those in a one-facet nonadditive
G-theory model (Scheffe, 1999).

The difference between additive and nonadditive assumptions has implications for
estimating the variance component for the objects of measurement (i.e., σ̂2

s ). As such,
in the numerator of σ̂2

s in Table 1 for the additive model, the MSs is subtracted by
both the interaction (σ̂2

sr) and random error (σ̂2
e) components. On the other hand, in

the numerator of σ̂2
s for the nonadditive model, the MSs is subtracted by only the

random-error term (σ̂2
e) (more discussion on the estimation of the random-error term

is presented in the Method section). Consequently, if an additive model is inadver-
tently used to analyze nonadditive data, the estimated variance component for the ob-
jects of measurement can be adversely underestimated. Zhang and Lin (2016) have
shown that when the magnitude of the interaction effect is substantial in a single-
facet design, the variance component for the objects of measurement can be unduly
underestimated, thereby affecting the estimation of phi-coefficients (analogous to re-
liability coefficients in classical test theory) in the G-theory framework. They have
further shown that in some cases, the underestimation can result in negative vari-
ance estimates, which is against the concept of a variance component (see Brennan,
2001, for more detail on negative variance estimates). On the other hand, when the
interaction is insignificantly small or does not exist (i.e., σ2

sr = 0), the additive and
nonadditive models do not differ with respect to variance component estimates. The
current G theory requires data be additive in a one-facet design. However, nonaddi-
tivity can appear in practice.

Purpose of the Study

In light of the adverse effects of nonadditivity in data on the estimated variance
component for the objects of measurement and consequently on the estimated phi-
coefficient (Zhang & Lin, 2016), the current study contributes to this line of research
by exploring statistical hypothesis testing that can detect nonadditivity in data under
the G-theory framework. Successful identification of nonadditivity is of significant
importance in G-theory applications so that the variance component for the objects
of measurement can be better estimated. Tukey’s single-degree-freedom test for non-
additivity (Tukey, 1949) is the only method to date that has been developed for the
single-observation-per-cell type of measurement in testing the significance (or lack
thereof) of nonadditivity in data. What has not been investigated in the literature is
the usefulness of Tukey’s single-degree-freedom test in detecting nonadditivity in
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data. In view of the impact of nonadditivity on G-theory analysis, the purposes of the
current study are to:

� evaluate Tukey’s single-degree-freedom test for nonadditivity in terms of
Type I and Type II error rates under the G-theory framework; and

� demonstrate the application of Tukey’s test to an empirical data set and highlight
its usefulness in correcting for the underestimation of variance component when
it occurs.

Method

The logic behind Tukey’s test is briefly sketched here, and readers are directed to
Tukey (1949) for more detail on the statistical procedures. First, Tukey’s test isolates
the sum of squares of a single-degree-freedom nonadditive interaction contrast from
the sum of squares of the confounding error component (εsr,e). Second, it performs a
hypothesis test (i.e., Ho: σ2

sr = 0, H1: σ2
sr �= 0) regarding the nonadditive interaction

contrast via an F ratio statistic:

FTukey = SSsr/1

(SSsr,e − SSsr)/(d fsr,e − 1)
, (2)

where SSsr is the observed sum of squares of the nonadditive interaction contrast,
SSsr,e is the observed sum of squares of the error component, and d fsr,e is the de-
gree of freedom associated with SSsr,e. The observed F ratio is to be compared with
F.05(1, d fsr,e − 1). A lack of significance for the interaction contrast would lend sup-
port to additivity (i.e., Ho), while a significant interaction contrast points to nonaddi-
tivity (i.e., H1).

When Tukey’s test indicates significant nonadditivity in data, one should use the σ2
s

under the nonadditive model (i.e., the nonadditive variance component for the objects
of measurement) in Table 1. To obtain σ̂2

s , one first needs to estimate σ2
e via the partial

omega squared for the nonadditive interaction contrast (ω2
(sr)). The definition of ω2

(sr)

(see Keppel & Wickens, 2004, p. 165) may be presented as ω2
(sr) = σ2

sr/σ
2
sr,e, which

equals to 1 minus the additivity index introduced by Zhang and Lin (2016) and can
be regarded as the nonadditivity index.

The variance component for errors is the composite of the nonadditive interaction
and the random error: σ2

sr,e = σ2
sr + σ2

e . Hence, for the estimated nonadditive variance
component for the objects of measurement from Table 1, where σ̂2

s = (MSs − σ̂2
e)/nr ,

the component σ̂2
e becomes σ̂2

sr,e(1 − ω̂2
(sr)). Next, one would estimate the partial

omega squared based on the observed Tukey test’s F ratio for the interaction con-
trast (FTukey) from Equation 2 as follows:

ω̂2
(sr) = (FTukey − 1)

(FTukey − 1 + 2ns)
.

Finally, the σ̂2
s for the nonadditive model then becomes

σ̂2
s =

MSs − σ̂2
sr,e

(
1 − ω̂2

(sr)

)

nr
.
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In the current study, we evaluated Tukey’s test in terms of Type I and Type II
error rates under the G-theory framework via a simulation study; in addition, we
applied Tukey’s test to an empirical judgmental study of educational standards, in
which a panel of raters rated the cognitive complexity of a set of English language
performance standards by using an established rating scale. Upon finding significant
nonadditivity in data based on Tukey’s test, we also estimated the nonadditive vari-
ance component for the objects of measurement. We used the R statistical software,
version 2.15.2, to perform the analysis in this study. Next, we provide details on the
simulation and empirical studies.

Simulation Study

Type I error rate is defined as the chance of falsely rejecting a null hypothesis when
in fact it is true (Howell, 2013). Generally speaking, for a statistical test to be con-
sidered useful, the Type I error rate should be small and is usually set at .05 as a rule
of thumb. By situating the notion of Type I error rate in the current study, it translates
to the probability of Tukey’s test in showing erroneous significant interaction effects
for nonadditivity when the data are actually additive. Given that, data generation for
the purpose of evaluating the Type I error of Tukey’s test followed the assumption of
additivity, such that the three random effects in Model (1) were generated indepen-
dently from three normal distributions, where αs ∼ N (0, .0305), βr ∼ N (0, .0093),
and εsr,e ∼ N (0, .2103), respectively. The values of variance components were taken
from Shavelson and Webb (1991, p. 29). By generating the three random components
independently of one another, one can be certain that nonadditivity is not present be-
cause nonadditivity occurs only when some or all of the components are correlated.

Type II error rate is defined as the chance of failing to reject the null hypothesis
given that the null hypothesis is actually false (Howell, 2013). What might be more
intuitive in the discussion of Type II error rate is the notion of statistical power. Power
is defined as the probability of accurately rejecting the null hypothesis when in fact it
is false. High power for a statistical test is desirable, and satisfactory power is usually
set at .80. Applying the notion of statistical power to Tukey’s test would indicate its
ability to accurately detect significant nonadditive interaction when the data are in
fact nonadditive.

Simulation Designs

In both the Type I error analysis and the power analysis of Tukey’s test, we in-
cluded four sample sizes (ns): 25, 50, 100, and 1,000 and four numbers of raters
(nr ): 3, 5, 10, and 20; therefore, we considered a total of 16 conditions in the sim-
ulation study. Myers (1979) argued that Tukey’s test was particularly sensitive to
“correlation between a subject’s average performance and the rate at which his per-
formance changes relative to the changes in the group performance” (p. 185). In the
current study, this correlation suggests that for objects of measurement (i.e., stan-
dards) that are truly high on the rating scale, lenient raters are likely to award higher
ratings while harsh raters tend to be more conservative in their ratings. For objects of
measurement that are truly low on the rating scale, lenient raters would not uniformly
give higher ratings; likewise, harsh raters would not necessarily assign lower ratings.
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Due to the different rating patterns in relation to where the objects of measurement
stand on the rating scale, a significant object-of-measurement-by-rater interaction
exists and thereby constitutes nonadditivity.

Data generation for the purpose of evaluating the statistical power of Tukey’s test
aimed to incorporate the above correlation identified by Myers (1979). In a s × r data
matrix such as that used in the current study, where standards constitute the rows and
raters the columns, this correlation is operationalized as the correlation between the
average ratings of standards across all raters (X̄s.) and the sum of cross-products
of the rating of each standard and the deviation of average rater rating from the
overall mean rating (

∑
r Xsr(X̄ .r − X̄ ..)). In the current simulation study, we targeted

this correlation at .50 so that it represents a medium magnitude of nonadditivity. The
actual average correlation was .54 across all the simulated conditions. The correlation
was realized by adding an interaction effect (αβsr ∼ N (0, σ2

sr) in Model (1) so that
the interaction correlated with both the objects of measurement (αs) and the rater
effect (βr ), while the random error remains to be uncorrelated with any effects. By
allowing the objects of measurement and the rater effect to be correlated with the
interaction effect, the simulated data become nonadditive.

Results

For each simulated condition, we conducted 1,000 replications. Hence, Type I er-
ror is calculated as the number of replications out of 1,000 in which Tukey’s test
erroneously suggests the presence of nonadditivity, whereas power is calculated as
the number of replications out of 1,000 in which Tukey’s test is successful in detect-
ing nonadditivity in the data. Table 2 presents results of Type I error rates for Tukey’s
test across the 16 simulated conditions.

Results show that the Type I error rate of Tukey’s test is around .05 for each con-
dition, suggesting that the test is successful in keeping the occurrences of falsely
detecting nonadditivity low when the data are actually additive. Table 3 shows the
results of power analysis for Tukey’s test.

As expected, when the number of objects of measurement (ns) is fixed, the power
increases as the number of raters increases. For example, when ns = 50, the power
increases from .69 to 1.00 as the number of raters increases from 3 to 20. In a similar
vein, when the number of raters is fixed, the power improves with more objects of

Table 2
Type I Error of Tukey’s Test: False Detection of Nonadditivity in One-Facet Design (1,000
Replications per Condition)

ns = 25 ns = 50 ns = 100 ns = 1,000

nr = 3 .048 .050 .045 .055
nr = 5 .048 .053 .054 .044
nr = 10 .054 .048 .042 .050
nr = 20 .056 .045 .050 .046
Average .052 .049 .048 .049
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Table 3
Power of Tukey’s Test: Successful Detection of Nonadditivity in One-Facet Design (1,000
Replications per Condition)

ns = 25 ns = 50 ns = 100 ns = 1,000

nr = 3 .55 .69 .75 .79
nr = 5 .84 .91 .94 .93
nr = 10 .97 .99 .99 1.00
nr = 20 1.00 1.00 1.00 1.00
Average .84 .90 .92 .93

measurement. For each ns , results show that the average power of Tukey’s test is
above .80 across the different numbers of raters, indicating that the test is sensitive to
the type of nonadditive interaction suggested by Myers (1979) when it in fact exists
in data.

Empirical Study

Data

We collected the empirical data in 2009 during a judgmental study of educational
standards in Oklahoma (Cook, Wilmes, Chi, & Lin, 2009). This empirical study was
motivated by the mandate, under the No Child Left Behind Act (2002), to conduct
content alignment studies for English language learners (ELLs) in the U.S. K-12 set-
ting (see Lin & Zhang, 2013, for more detail on ELL content alignment). One of the
objectives of the study was to rate the cognitive complexity of a set of 25 English lan-
guage performance standards using the Depth of Knowledge (DOK) scale developed
by Webb (2002). On a scale of 1 to 4, trained raters, who were either content-area
teachers or ELL specialists, gave DOK ratings based on the content/task represented
in the performance standards. Level 1 is the lowest level, representing low cognitive-
demand processing, while level 4 indicates high-level complex processing. A panel
of four raters ( nr = 4) rated each performance standard independently based on the
established cognitive scale. The standards and raters were crossed in the data set; that
is, every rater rated the same set of 25 standards, and the performance standards were
the objects of measurement ( ns = 25). In the empirical study, the extent to which
the panel of raters reliably interpreted the performance standards in a consistent fash-
ion, with respect to the cognitive scale, was of primary importance because raters’
reliability needs to be examined prior to making valid interpretations of the rater-
mediated results from the content alignment study. The phi-coefficient, a reliability-
like coefficient in G theory, was adopted to serve this purpose and is computed as
follows:

phi − coefficient (�) = σ̂2
s

σ̂2
s + σ̂2

r
nr

+ σ̂2
sr,e

nr

. (3)

Recall from Table 1 that the additive and nonadditive models differ in the estima-
tion of variance component for the objects of measurement (σ̂2

s ). The underestimation
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of σ2
s , due to failing to consider nonadditivity when the data is in fact nonadditive,

will also result in the underestimation of the phi-coefficient. Following the sugges-
tion by Scheffe (1999) regarding data scrutiny, we first examined the magnitude of
the variance component for errors (σ̂2

sr,e) in the empirical analysis. Upon finding a
relatively large proportion for the error component, we performed Tukey’s test for
nonadditivity. A significant FTukey would suggest the presence of nonadditivity in the
data and a potential underestimation of σ2

s .

Results

For illustrative purposes, in addition to examining the relative magnitude of σ̂2
sr,e,

we estimated the variance components for standards and raters by using the one-facet
additive model regardless of the nature of the data, be it additive or nonadditive. The
mean squares, estimated variance components, and their respective proportions of
total variance are reported in Table 4.

First of all, it is obvious that the relative magnitude of σ̂2
sr,e is large in that it ac-

counts for 47.4% of total variance, which is a hint of potential nonadditivity in the
data. Second, it is odd to observe a negative σ̂2

s because it is against the notion of a
variance component. It is possible that the negative value is a result of the underes-
timation of σ2

s in the presence of nonadditivity based on the additive model, which
further warrants the use of Tukey’s test to detect nonadditivity.

Tukey’s single-degree-freedom test for nonadditivity shows a significant nonad-
ditive interaction, FTukey(1,71) = 221.098, p < .001, indicating that the one-facet
nonadditive model should have been used instead in the analysis. Table 5 presents

Table 4
Mean Squares, Estimated Variance Components, and Proportions of Total Variance Based on
One-Facet Additive Model

Observed
Mean Square

Estimated Variance
Component

Proportion of
Total Variance

Standard (s) .0892 −.005 0%
Rater (r) 3.13 .121 52.6%
Error (sr, e) .1092 .109 47.4%

Note. The negative variance component was set to zero in the calculation of proportions.

Table 5
Mean Squares, Estimated Variance Components, and Proportions of Total Variance Based on
One-Facet Nonadditive Model

Observed
Mean Square

Estimated Variance
Component

Proportion of
Total Variance

Standard (s) .0892 .017 6.9%
Reviewer (r) 3.13 .121 49.0%
Error (sr, e) .1092 .109 44.1%
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the mean squares, estimated variance components, and their respective proportions
of total variance based on the one-facet nonadditive model.

Because of the significantly large nonadditive interaction contrast identified by
Tukey’s test, we observed the underestimation of variance component for the ob-
jects of measurement (σ2

s ) based on the additive model in Table 4 ( σ̂2
s = −.005).

We then corrected the underestimation upward based on the nonadditive model pre-
sented earlier in the Method section and showed the results ( σ̂2

s = .017) in Table
5. Next, by plugging in the estimated variance components into Equation 3, we ob-
tained the phi-coefficient to assess the reliability of the panel of raters in interpreting
the performance standards. Had the additive model been used in the analysis, the
phi-coefficient would have been –.095. With the correction of σ̂2

s based on the non-
additive model, the phi-coefficient is .231.

Discussion

The current study seeks to advance the discussion of nonadditivity in the context
of G-theory applications. It has been shown empirically that when nonadditivity in
data is present, the variance component for the objects of measurement can be un-
derestimated, and this is one of the possible reasons that leads to negative estimated
variance components in practice. More importantly, the current study evaluates the
usefulness of Tukey’s test under the G-theory framework in detecting nonadditiv-
ity in terms of Type I and Type II error rates in a one-facet model, and it further
demonstrates the correction for the underestimation of the variance component for
the objects of measurement based on Tukey’s F ratio statistic. In the presence of non-
additivity in data, variance components for the rater effect and for the error term are
assumed to be the same between the additive and nonadditive one-facet models in G
theory, while the difference between the additive and nonadditive models lies in the
variance component for the objects of measurement.

In rater-mediated measurement under the G-theory framework, raters are assumed
to be randomly sampled from the universe of admissible raters. All raters in this uni-
verse are well-calibrated and unbiased, in the sense that the raters are interchange-
able with one another. Nevertheless, even in a rigorous rater-training system, certain
practical realities might reduce its effectiveness, such as unexpected time pressure
due to an unforeseen short turnaround time for rating. Some raters’ judgments might
be more susceptible to time pressure. As a result, although all the raters have been
trained, some of them may not be interchangeable with those from the universe of
admissible raters. In practice, any trained raters are assumed to be in the universe of
admissible raters; however, this assumption cannot be taken as a given. The current
article presents one instance of the violation of the rater interchangeability assump-
tion. Using Tukey’s test, we demonstrated its usefulness in evaluating the above as-
sumption in relation to nonadditivity. Most importantly, Tukey’s test can serve as a
practical screening tool for data scrutiny in rater-mediated measurement. As such, the
presence of nonadditivity identified by Tukey’s test indicates that some or all of the
raters are not interchangeable with those from the universe of admissible raters, sug-
gesting that recalibrating the raters and thus re-collecting the data may be warranted.
If re-collecting data is not possible, the method presented in this article represents
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one way of correcting biased estimation of variance component for the objects of
measurement.

The current article is limited to the discussion of nonadditivity in one-facet model
in G theory. Future research can broaden the scope by applying and evaluating
Tukey’s test in two-facet models because the most common facets in many rater-
mediated measurement (e.g., constructed-response tests) are those of raters and tasks.
Although Tukey’s test is not perfect in the sense that “[it] will not be sensitive to
all interactions” (Myers, 1979), it is nevertheless an effort to address nonadditivity
given the complications introduced by it. Future research can aim to investigate the
test’s sensitivity (or lack thereof) to various types of nonadditive interactions and to
develop other procedures that can complement Tukey’s test when it fails to detect
nonadditivity.
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