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Despite common operationalization, measurement efficiency of computerized

adaptive testing should not only be assessed in terms of the number of items

administered but also the time it takes to complete the test. To this end, a recent

study introduced a novel item selection criterion that maximizes Fisher infor-

mation per unit of expected response time (RT), which was shown to effectively

reduce the average completion time for a fixed-length test with minimal

decrease in the accuracy of ability estimation. As this method also resulted

in extremely unbalanced exposure of items, however, a-stratification with

b-blocking was recommended as a means for counterbalancing. Although

exceptionally effective in this regard, it comes at substantial costs of attenuating

the reduction in average testing time, increasing the variance of testing times,

and further decreasing estimation accuracy. Therefore, this article investigated

several alternative methods for item exposure control, of which the most pro-

mising was a simple modification of maximizing Fisher information per unit of

centered expected RT. The key advantage of the proposed method is the flexi-

bility in choosing a centering value according to a desired distribution of testing

times and level of exposure control. Moreover, the centered expected RT can be

exponentially weighted to calibrate the degree of measurement precision. The

results of extensive simulations, with item pools and examinees that are both

simulated and real, demonstrate that optimally chosen centering and weighting

values can markedly reduce the mean and variance of both testing times and test

overlap, all without much compromise in estimation accuracy.

Keywords: computerized adaptive testing; response time; item selection; item exposure;

test overlap

The primary objective of computerized adaptive testing (CAT) is to

efficiently measure an examinee’s ability (or any latent trait), where effi-

ciency is by and large conceptualized as the degree of measurement
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precision for a given number of items administered. This is generally

accomplished by an algorithm that sequentially selects items according to

an information-based optimality criterion. Among the various criteria pro-

pagated in literature over the decades, the classic maximum Fisher infor-

mation criterion (maximum information [MI]; Lord, 1980) remains

dominant in current practice due to its straightforward implementation and

direct link to measurement precision. Specifically, the asymptotic standard

error of the maximum likelihood estimate (MLE) of ability is the inverse

square root of the cumulative Fisher information of scored items. There-

fore, in theory, measurement is most precise when selecting items purely

based on maximizing Fisher information.

Nevertheless, despite common operationalization, measurement efficiency

of CAT should not only be assessed in terms of the number of items adminis-

tered but also the time it takes to complete the test. To this end, Fan, Wang,

Chang, and Douglas (2012) proposed a novel item selection criterion that

maximizes the ratio of Fisher information to expected response time (RT; MI

with time [MIT]), which can also be interpreted as information per unit of time.

In other words, the MIT algorithm selects the next item in the pool with the

highest rate of information for the examinee, thus greatly reducing the average

completion time for a fixed-length test with only a marginal decrease in the

accuracy of ability estimation. In fact, a recent study found that this simple

method results in shorter average test times and fewer RT constraint violations

compared to imposing explicit constraints or implementing more complex

optimization approaches (Veldkamp, 2016). However, perhaps unsurprisingly,

MIT also results in extremely skewed selection of items, since items with both

high discrimination and low time intensity are strongly favored. Given that a-

stratification with b-blocking (ASB; Chang, Qian, & Ying, 2001) is a powerful

technique for balancing item exposure, a time-weighted version of it (ASB with

time [ASBT]) was recommended as a better balanced alternative to MIT.

According to results presented later, however, ASBT comes at substantial costs

of increasing both the mean and variance of testing times and estimation error

relative to MIT.

Therefore, this article investigated the following three alternative tech-

niques for leveraging RTs in item selection: (1) partitioning the item pool

into multiple stages according to time intensities and utilizing MIT within

each stage, (2) maximizing the ratio of Fisher information to the absolute

difference between item time intensity and examinee latent speed, and

(3) maximizing the ratio of Fisher information to an optimally centered

and weighted expected RT. Extensive simulations, with item pools and

examinees that are both simulated and real, were conducted to evaluate the

performances of these methods in controlling both item exposure and

testing time distribution while maintaining an adequate level of measure-

ment precision.
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CAT Framework

The CAT mechanism is predominantly enabled by a class of models within

the item response theory (IRT) framework. One of the most frequently employed

IRT models in CAT applications measuring a single latent construct with dichot-

omous items is the univariate three-parameter logistic model (3PLM; Lord &

Novick, 1968), generally parameterized as:

PðXij ¼ 1jyÞ ¼ PjðyiÞ ¼ cj þ
1� cj

1þ e�ajðyi�bjÞ
: ð1Þ

Note that Xij is a binary random variable mapping the ith examinee’s response to

the jth item as either 1 for correct or 0 for incorrect, and y is a latent variable

representing ability. Hence, function PjðyiÞ computes the probability of correctly

responding to item j given the examinee’s ability yi, where aj, bj, and cj represent

the item discrimination, difficulty, and pseudo-guessing parameters, respec-

tively. Also, yi and bj are fixed to be on the same scale.

The conventional MI method of item selection is based on the Fisher infor-

mation, which for a 3PLM item is given as:

IjðyiÞ ¼ a2
j

1 � PjðyiÞ
PjðyiÞ

� �
PjðyiÞ � cj

1 � cj

� �2

: ð2Þ

With the ultimate goal of maximizing cumulative information, the algorithm

selects the next item with the largest IjðŷiÞ in the pool, where ŷi is the interim

MLE of yi based on the examinee’s responses to items thus far (Lord, 1980).

Specifically, given the set of k observed responses, xi ¼ fxi1; xi2; . . . ; xikg, the

MLE of yi is obtained as

ŷ
ML

i ¼ arg max
yi

LðyijxiÞ ¼ arg max
yi

Yk

j¼1

PjðyiÞxij ½1 � PjðyiÞ�1�xij ; ð3Þ

in which LðyijxijÞ is the likelihood function of yi given observed response xij:

LðyijxijÞ ¼ PjðyiÞxij ½1 � PjðyiÞ�1�xij : ð4Þ

However, a major caveat of MLE in practice is that the estimate of yi can be

highly unstable at the beginning of a test when only a small number of items have

been administered. Furthermore, MLE requires at least one correct and one

incorrect response to calculate a proper estimate. When all responses are correct,

yi is estimated to be1; likewise, when all responses are incorrect, yi is estimated

to be �1. Therefore, a popular alternative that shares none of these particular

limitations is a Bayes estimator called expected a posteriori (EAP; Bock &

Mislevy, 1982), which takes the expected value of the posterior distribution of

yi given xi as follows:
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ŷ
EAP

i ¼ Eyi
f ðyijxiÞ ¼

Z
Y
yi

LðyijxiÞgðyiÞR
YLðyijxiÞgðyiÞdyi

dyi ¼
R
YyiLðyijxiÞgðyiÞdyiR
YLðyijxiÞgðyiÞdyi

: ð5Þ

Here, Y is the latent parameter space of yi (i.e., yi 2 Y) and gðyiÞ is a prior

density function of yi, typically assumed to be uniform or normal when lacking

an empirical prior. Using numerical integration, the EAP estimate of yi can be

approximated by

ŷ
EAP

i �

P
Q

yqLðyqjxiÞgðyqÞP
Q

LðyqjxiÞgðyqÞ
; ð6Þ

where Q is a finite set of quadrature nodes yq (i.e., yq 2 Q).

Numerous simulation studies that have compared these two estimators (e.g.,

van der Linden & Pashley, 2010; T. Wang & Vispoel, 1998; Weiss, 1982)

generally confirm the classic bias–variance trade-off between maximum like-

lihood and Bayesian estimation: MLE tends to have lower bias but higher stan-

dard error, while EAP tends to have higher bias (toward the prior mean) but lower

standard error. Nevertheless, differences are practically negligible for moderate

test lengths or at least 30 items according to T. Wang and Vispoel (1998). In

addition, a fairly common practice is to use a combination of MLE and EAP (van

der Linden & Pashley, 2010). For example, EAP could act as a provisional fail-

safe if an infeasibility occurs with MLE.

Regardless of the choice between estimators or combinations thereof, MI is

generally a well-substantiated item selection criterion in terms of measurement

efficiency. In its pure form, however, MI is also notoriously prone to selecting

items with high a parameters, simply because they have high information (Chang

et al., 2001; Chang & Ying, 1999; Hau & Chang, 2001). Although clearly

optimal from an efficiency standpoint, this inevitably results in exceedingly

unbalanced exposure of items, which is highly undesirable from both resource

management and test security perspectives. Consequently, a mechanism for item

exposure control is typically implemented when using MI. Georgiadou, Trian-

tafillou, and Economides (2007) provide a fairly comprehensive review of var-

ious strategies, of which a few prominent ones include the Sympson–Hetter (SH)

method (Hetter & Sympson, 1997; Sympson & Hetter, 1985), modifications of

SH (Stocking & Lewis, 1998; van der Linden, 2003), and the so-called random-

esque method (Kingsbury & Zara, 1989).

As an alternative to MI, a noteworthy item selection method is the ASB

procedure, which is illustrated with a small-scale example in Figure 1. The

general setup is as follows: (1) partition the item bank into several even blocks

according to the magnitude of b values, (2) sort each block according to the

magnitude of a values, and (3) form strata by grouping items with the same rank

order of a across the blocks. The rationale behind b-blocking is to ensure a
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balanced distribution of difficulties in each stratum for item pools that exhibit a

correlation between a and b, which should be examined by practitioners (Chang

et al., 2001; Chang & van der Linden, 2003; Wingersky & Lord, 1984). The CAT

administration is then divided into successive stages, with the best performance

yielded by progressing from the lowest a stratum to the highest a stratum (Hau &

Chang, 2001). At any given stage during a testing session, the next item chosen is

the one that maximizes the b-matching criterion defined as

BjðŷiÞ ¼ 1

jŷi � bjj
: ð7Þ

In other words, the item with the b parameter closest to ŷi (using estimator of

choice) from the current stratum is selected next. Although not as efficient as MI

overall, ASB drastically improves exposure balance by drawing items more evenly

across the pool. Furthermore, advancing from low to high discrimination items has

been shown to curtail the underestimation of examinees who make inadvertent

mistakes at the beginning, particularly for short-length tests (Chang & Ying, 2008).

RT Framework

In recent years, there has been a growing interest in using RTs in testing. The

immense potential of RTs as a rich source of information is certainly not news,

but their practical utility could not be realized until the advent of modern com-

puterized test delivery. These days, test delivery software can now store virtually

all examinee by task interactions, including RTs for every item, thus greatly

facilitating endeavors to harness them via modeling. Some of the more popular

models include the lognormal model (van der Linden, 2006), a generalization of

the lognormal called the Box–Cox normal model (Klein Entink, van der Linden,

FIGURE 1. An illustration of the a-stratification with b-blocking process.
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& Fox, 2009), a flexible semiparametric approach called the Cox proportional

hazards model (C. Wang, Fan, Chang, & Douglas, 2013), and a further general-

ization called the linear transformation model that subsumes the previous three as

special cases (C. Wang, Chang, & Douglas, 2013). Each of these RT models was

primarily developed as a component in van der Linden’s (2007) two-level hier-

archical framework for modeling speed and accuracy. The first level consists of

separate measurement models for latent speed and accuracy (e.g., lognormal and

3PLM, respectively), and the second level specifies the population and item

domain models (i.e., joint distributions of person and item parameters, respec-

tively). Note that the population model relates speed and accuracy across exam-

inees using a covariance parameter. On the other hand, this modeling framework

disregards the within-person speed–accuracy trade-off, a particularly robust cog-

nitive phenomenon in reaction time tasks. Unless a test is unduly speeded, a

reasonable assumption is made that an examinee operates steadily at his or her

innate speed, thereby precluding any speed-induced fluctuations in accuracy (van

der Linden, Breithaupt, Chuah, & Zhang, 2007).

Among a variety of RT models, the lognormal is perhaps the most recognized

due to its relative simplicity and practicability for typical RT data. While it lacks

the flexibility of more complex and general models, it is one of the most straight-

forward to conceptualize and implement, particularly within the hierarchical

framework. Specifically, the lognormal model defines the density function of

RT for examinee i on item j ðTijÞ, given the latent speed parameter for the

examinee ðtiÞ, as

f ðtijjtiÞ ¼
aj

tij

ffiffiffiffiffiffi
2p
p e� ½ajðlog tij � bj þ tiÞ�2=2; ð8Þ

where aj and bj are the time discrimination and time intensity parameters for item

j, respectively, and bj and ti are fixed to be on the same scale. Rewriting the

density function in standard form,

f ðtijjtiÞ ¼ 1

tij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1=ajÞ2

q e� ½log tij�ðbj � tiÞ�2=½2ð1=ajÞ2�; ð9Þ

it becomes clear that m ¼ bj � ti and s2 ¼ ð1=ajÞ2. Thus, the marginal model

can be written as

Tijjti * Lognormal ½bj � ti; 1=a2
j �: ð10Þ

Finally, given that the expected value of a lognormal random variable with log

mean m and log variance s2 is emþs
2=2, an examinee’s expected RT for an item is

EðTijjtiÞ ¼ ebj � ti þ 1=ð2a2
j Þ : ð11Þ

Note that items with low bj and high aj have low EðTijjtiÞ.
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Motivation

In efforts to increase measurement efficiency in terms of time, Fan et al.

(2012) demonstrated the integration of RT into MI by inversely weighting the

Fisher information by the examinee’s expected RT for each item. The next item

chosen is the one that maximizes the MIT criterion, now formally defined as

ITjðŷi; t̂iÞ ¼
IjðŷiÞ

EðTijjt̂iÞ
: ð12Þ

Here, t̂i is the MLE of ti, which is conveniently computed by the closed form

expression,

t̂i ¼

Pk
j¼ 1

a2
j ðbj � log tijÞ

Pk
j¼ 1

a2
j

; ð13Þ

given an examinee’s RTs ðti1 ; . . .; tikÞ for the k items administered thus far (van

der Linden, 2006). Clearly, MIT favors items with high information and low

expected RTs, thus attempting to accomplish the two (possibly competing)

tasks of accurately estimating ability while reducing the testing time as much

as possible. Although quite successful in this regard, Fan et al. (2012) showed

that MIT also results in item exposure that is even more skewed than MI.

Hence, they introduced ASBT as a compromise that stratifies the item pool

as in ASB and inversely weights the b-matching criterion by the expected RT.

Specifically, this method selects the next item in the present stratum that max-

imizes the following criterion:

BTjðŷi; t̂iÞ ¼
BjðŷiÞ

EðTijjt̂iÞ
; ð14Þ

which was shown to balance item exposure rather well, but as shown later,

largely by heavily sacrificing the benefits of time weighting in the first place.

General Method

In search of alternatives to MIT or ASBT due to their aforementioned draw-

backs, this article investigated the performance of three new RT-informed cri-

teria for item selection in CAT, all under the hierarchical framework with 3PLM

and lognormal as the measurement models. In the simulation studies that follow,

each of these new methods was directly compared to MIT and ASBT, along with

MI as the performance baseline and random (i.e., completely random item selec-

tion) as a reference for ideal item pool usage but worst accuracy.
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Proposed Item Selection Procedures

The first method is called b-partitioned MIT (BMIT), in which b-partitioning

works analogously to the b-blocking procedure in ASB. For a given item pool,

the items are sorted according to increasing b values and evenly partitioned into a

specified number of stages as illustrated in Figure 2. Items are then selected from

each successive stage using MIT, proceeding from the lowest to highest b-parti-

tions. In this way, BMIT forces a more balanced selection of items across the

entire range of time intensities as opposed to a normally very biased selection of

low-b items.

The second method is called MI with b-matching (MIB), which inversely

weights Fisher information by the absolute difference between bj and t̂i in lieu

of EðTijjt̂iÞ:

IBjðŷi; t̂iÞ ¼
IjðŷiÞ
jbj � t̂ij

: ð15Þ

This method primarily stems from the hypothesis that, compared to MIT, the

item exposure skew could be greatly reduced when examinees are adminis-

tered items in accordance with their latent speed. Provided that the distribu-

tions of bj and ti are similar, matching them as closely as possible would be

far less restrictive than perpetually selecting items with the lowest bj and

highest aj values. Moreover, MIB would have the additional benefit of lower

RT variability across examinees compared to MIT. This is because MIB

strives to achieve bj ¼ ti, in which case the expected RT for item j is

reduced to

EðTijÞ ¼ e1=ð2a2
j
Þ ð16Þ

for any examinee regardless of latent speed.

FIGURE 2. An illustration of the b-partitioning process.
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The third method is Generalized MIT (GMIT), which appends a centering

value v and weighting exponent w to the expected RT term:

ITG
j ðyi; tiÞ ¼

IjðyiÞ
jEðTijjtiÞ � vjw ; fv;wg 2 R2

�0 : ð17Þ

Note that GMIT reduces to MI for w ¼ 0 and MIT for fv; wg ¼ f0; 1g.
The rationale of the generalization is as follows: First, maximizing ITG

j is in

part achieved by minimizing jEðTijjtiÞ � vj, which occurs when

EðTijjtiÞ ¼ v. In the case of MIT where v ¼ 0, expected RT of 0 is the

unattainable lower bound regardless of ti, so the effective item pool is

severely confined to a handful of the least time intensive items. This also

results in substantial variability of testing times, since much of the same

items are being administered to all examinees of varying speeds. In contrast,

for a reasonable value of v > 0, the RT-optimal items would vary from

person to person depending on ti, consequently improving item pool usage.

This would also stabilize testing times, because every examinee would gen-

erally be administered items that take on average v time units to answer.

Second, w allows for varying the influence of the centered expected RT in

item selection. Presumably, decreasing w would decrease the influence of

jEðTijjtiÞ � vj, thereby improving item exposure balance at the expense of

increasing overall testing time. Third, the absolute value of the centered

expected RT is taken since it is of no consequence whether the expected

RT is lower or higher than v (and taking a noninteger exponent of a negative

value may result in a complex number). For the simulation studies presented

shortly, the sets of v and w values were limited to V ¼ f0:0; 0:1; :::; 3:0g
and W ¼ f0:50; 0:75; 1:00g, respectively, and every fv;wg 2 V �W was

run (for a total of jV � W j ¼ 93 scenarios).

Evaluation Criteria

The following criteria were used to evaluate the performance of each item

selection method given n examinees:

� root mean squared error (RMSE) for estimation accuracy of examinee parameters,

RMSEðŷÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼ 1

ðŷi � yiÞ2
s

; ð18Þ

RMSEðt̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðt̂i � tiÞ2
s

; ð19Þ
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� mean and standard deviation of testing times (tti) across examinees as measures of

time efficiency and stability,

tt ¼ 1

n

Xn

i¼ 1

tti ¼ 1

n

Xn

i¼ 1

X
j 2 Ri

tij; ð20Þ

stt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n � 1

Xn

i¼1

ðtti � ttÞ2
s

; ð21Þ

where Ri is the set of all items administered to examinee i;

� mean and standard deviation of test overlap rates (torii0 ) between all possible pairs

of examinees i and i0 as measures of test security,

tor ¼ n

2

� ��1Xn�1

i¼ 1

Xn

i0 ¼ iþ 1

torii0 ¼ n

Lðn� 1Þ
Xm

j¼1

er2
j �

1

n� 1
; ð22Þ

stor ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

2

� �
� 1

� ��1Xn�1

i¼ 1

Xn

i0 ¼ iþ 1

ðtorii0 � torÞ2
vuut ; ð23Þ

where m is the size of the item pool, L is the fixed test length, torii0 is

computed as the number of common items between a pair of examinees

divided by L, and erj is the observed exposure rate for item j calculated as

the number of times the item was used divided by n.

The less computationally intensive formula for tor using erj was derived by

S.-Y. Chen, Ankenmann, and Spray (2003). Also, C. Wang, Zheng, and Chang

(2014) advocated the use of stor in addition to the traditional tor, since it is

entirely possible to have low tor overall but very high torii0 among a subgroup

of examinees. From this perspective, a relatively constant torii0 but slightly higher

tor is generally preferable to a widely varying torii0 but lower tor. As lower bound

comparisons, when items are selected completely at random, the expected value

and standard deviation of torii0 are, respectively,

mtor ¼ mer ¼
L

m
; stor ¼ m� L

m
ffiffiffiffiffiffiffiffiffiffiffiffi
m� 1
p : ð24Þ

It is worth noting that Fan et al. (2012) used an alternative indicator of test

security,

w2 ¼
Xm

j¼ 1

ðerj � merÞ2

mer

; ð25Þ

which measures the skewness of item exposure rates (Chang & Ying, 1999).

Although w2 and tor are sometimes reported as two distinct statistics that capture
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different aspects of item pool usage (e.g., Y. Cheng, Chang, & Yi, 2007; Deng,

Ansley, & Chang, 2010), it can be shown that one is simply a linear transforma-

tion of the other as follows:

w2 ¼ mðn � 1Þ
n

tor þ m

n
� L: ð26Þ

The derivation and implications of this result will be presented in a separate

paper currently in preparation. The present article opted to report tor, instead

of w2, for its more intuitive interpretation and wider familiarity.

For easy reference, all item selection methods and evaluation criteria are

summarized in Table 1.

Study 1: Simulated Item Pools and Examinees

Method

For this initial study, hundreds of simulations were conducted with a broad

range of parameter values in efforts to ensure that the findings are not limited to

idiosyncratic data. In the interest of brevity and clarity, just two representative sets

of simulated item pools and examinees are presented here to evaluate the item

selection criteria under disparate conditions. The first set of data was specified as

Set 1

ða�j ; bj; bjÞ*N 2½�1;Σ1�; �1 ¼
0:3
0:0
0:0

2
4

3
5; Σ1 ¼

0:10 0:15 0:00

0:15 1:00 0:25

0:00 0:25 0:25

2
4

3
5;

where a�j ¼ log aj, meaning aj has a lognormal distribution;

TABLE 1.

Summary of Item Selection Methods and Evaluation Criteria

Item Selection Methods Evaluation Criteria

MI Maximum information RMSEðŷÞ Root mean squared error of ŷ
MIT MI with time RMSEðt̂Þ Root mean squared error of t̂
ASB a-stratification with b-blocking tt Mean test time

ASBT ASB with time stt Standard deviation of test time

MIB MI with b-matching tor Mean test overlap rate

BMIT

GMIT

b-partitioned MIT

Generalized MIT

stor Standard deviation of test overlap rate
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cj *b½2; 10�;

aj * U ½2; 4�;

ðyi; tiÞ*N 2½�2; Σ2�; �2 ¼
0

0

� �
; Σ2 ¼

1:00 0:25

0:25 0:25

� �
;

and the second set of data was specified as

Set 2

ða�j ; bj; bjÞ*N 2½�1; Σ1�; �1 ¼
0:30

0:00

�0:25

2
4

3
5; Σ1 ¼

0:10 0:15 0:00

0:15 1:00 0:20

0:00 0:20 0:16

2
4

3
5;

cj *b½2; 10�;

aj * U ½0:5; 2:5�;

ðyi; tiÞ*N 2½�2; Σ2�; �2 ¼
0:00

0:25

� �
; Σ2 ¼

1:00 0:20

0:20 0:16

� �
:

Note that there are two key differences between the sets: (1) The marginal

distributions of bj and ti are identical in Set 1, whereas they are narrower and

shifted apart in Set 2, and (2) the mean of aj is greater in Set 1. Otherwise, the

parameter specifications are equivalent.

For each set, m ¼ 500 items and n ¼ 1,000 examinees were randomly gen-

erated, then each examinee’s response and RT were simulated for every item.

The test length was fixed at L ¼ 50 items, with the first item chosen randomly in

order to calculate initial estimates of yi and ti. Estimation was performed with a

combination approach, in which EAP was used as an interim substitute whenever

MLE failed. For ASBT, the item pool was divided into five strata of 100 items

each, then 10 items were selected in each successive stage. For BMIT, the

following b-partitions were implemented:

� One b-partition: equivalent to no b-partitioning (i.e., single partition of 500 items).

� Two b-partitions: item pool divided into low and high b-partitions of 250 items

each. The first 25 items were selected in the low b stage, then the next 25 items

were selected in the high b stage.

� Three b-partitions: item pool divided into low, mid, and high b-partitions with 167,

167, and 166 items, respectively. The first 17 items were selected in the low b
stage, the next 17 items were selected in the mid b stage, and then the final 16 items

were selected in the high b stage.
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Results

Figures 3 and 4 show the results of BMIT and MIB with Sets 1 and 2,

respectively. Each of the evaluation criteria is plotted as a function of the number

of b-partitions, which only applies to BMIT marked as 	’s. Note that MIT,

marked separately as �, is equivalent to BMIT with one b-partition. All of the

other methods are plotted as horizontal lines representing a single value. The

following observations can be made on each set of criteria:

(1) Estimation accuracy: In terms of RMSEðŷÞ, BMIT was very close to MI regard-

less of the number of b-partitions, while MIB was very close to ASBT but still

well below Random. RMSEðt̂Þ (shown in the shaded plot area) was extremely

low and essentially equivalent for all methods. There were no discernable dif-

ferences in relative performance between Sets 1 and 2.

(2) Mean and standard deviation of testing times: tt and stt generally increased for

BMIT with more b-partitions, the effect being greater with Set 1 than Set

2. For Set 1, in particular, the distribution of testing times for BMIT

became worse than that of ASBT and MI beyond two b-partitions. MIB

performed exceptionally well with Set 1, which was second only to MIT in

terms of tt and even better than MIT in terms of stt; on the contrary, MIB

performed terribly with Set 2, where both tt and stt were the worst out of

all methods.

(3) Mean and standard deviation of test overlap rates: tor generally decreased for

BMIT with more b-partitions, while stor generally remained the same regard-

less. Even with five b-partitions, BMIT had higher tor and only slightly lower

stor than MI. MIB performed more similarly to ASBT, especially with Set 1

where MIB was nearly identical to ASBT and very close to Random in terms

of tor.

In summary, BMIT is almost as accurate as MI in terms of estimation but

using as few as two or three b-partitions may inordinately increase the mean

and standard deviations of testing times while hardly improving the balance of

item exposure compared to MIT. On the other hand, MIB is generally similar to

ASBT in terms of estimation and better at controlling test overlap rates than

BMIT and MI; however, it may counterproductively increase the mean and

variance of testing times if the distributions of b and t are significantly non-

overlapping. Therefore, neither BMIT nor MIB proves to be practicable tech-

niques in broader contexts.

Figure 5 shows the results of GMIT with Set 1. The corresponding results with

Set 2 were very similar in all respects, so they are not presented here. Each of the

evaluation criteria is plotted as a function of v, which only applies to GMIT. Note

that MIT, explicitly marked with�, is equivalent to GMIT at v ¼ 0 and w ¼ 1.

Also note that MIT, ASBT, MI, and Random are all exactly the same as in

Figures 3 and 4. This time, the following observations about GMIT can be made

on each set of criteria:
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FIGURE 3. Performances of BMIT and MIB for simulated data: Set 1. The b-partitions

only apply to BMIT. BMIT ¼ b-partitioned MIT; MIT ¼ MI with time; MI ¼ maximum

information; MIB ¼ MI with b-matching.
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FIGURE 4. Performances of BMIT and MIB for simulated data: Set 2. The b-partitions

only apply to BMIT. BMIT ¼ b-partitioned MIT; MIT ¼ MI with time; MI ¼ maximum

information; MIB ¼ MI with b-matching.
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FIGURE 5. Performances of GMIT for simulated data: Set 1. The centering values v only

apply to GMIT. GMIT¼Generalized MIT; MIT¼MI with time; MI¼maximum information.
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(1) Estimation accuracy: RMSEðŷÞ slowly climbed, then leveled out as v increased.

For w ¼ 1, RMSEðŷÞ plateaued around the level of ASBT. At any given v,

RMSE ðŷÞ was always less for smaller w, eventually reaching the level of MI

as w approaches 0. As before, RMSE ðt̂Þ was extremely low and essentially

equivalent for all methods.

(2) Mean and standard deviation of testing times: Larger w led to lower tt from v ¼ 0

to about 1, at which point tt equalized for all w, then the trend reversed for v

beyond 1. On the other hand, larger w always resulted in lower stt at any v. For any

w, tt and stt were minimized at about v ¼ 0:3 and v ¼ 1:1, respectively. At

these minimum points, GMIT far outperformed all other methods.

(3) Mean and standard deviation of test overlap rates: Larger w led to higher tor

from v ¼ 0 to about 0.5, at which point tor equalized for all w, then the trend

reversed for v beyond 0.5. On the other hand, larger w led to lower stor from v ¼
0 to about 0.3, at which point tor equalized for all w, then the trend reversed for v

beyond 0.3. For any w, tor and stor were both minimized at about v ¼ 1:1. At this

minimum point, GMIT performed comparably to ASBT.

Several of these observed patterns deserve some elucidation. First, perhaps

counterintuitively, tt was minimized and tor was maximized not at v ¼ 0 but at

about v ¼ 0:3, which was the approximate minimum of the expected RT at the

median of t: min
�

E½TjjmedðtÞ�
�
� 0:3. Since no items can have an expected

RT of 0, EðTijjtiÞ centered at the representative minimum will generally be less

than EðTijjtiÞ itself, thereby having greater weight in ITG
j . Second, tor and stor

were minimized at about v ¼ 1:1, which was the approximate median of the

expected RT at the median of t: med
�

E½TjjmedðtÞ�
�
� 1:1. A heuristic expla-

nation is that centering the expected RT at its centermost value allows the

greatest flexibility in selecting items for examinees at both ends of the t spec-

trum, thereby optimizing item pool usage. Third, stt also happened to be mini-

mized at about v ¼ 1:1 for this particular data, but a clear pattern could not be

discerned in general. Fourth, w instigated a distinct trade-off between RMSEðŷÞ
and performance on other criteria, specifically tor for v > 0:5 and stt. Never-

theless, the effects of w were relatively minor compared to the influence of v on

general performance. Therefore, the best performer for these data seemed to be

GMIT with v ¼ 1:1, with the less important choice of w mostly depending on the

minimum accuracy or maximum average rate of test overlap deemed acceptable.

Study 2: Real Item Pool and Examinees

Method

To further validate the effectiveness of GMIT, the procedure was next imple-

mented on a set of real data from a high-stakes, large-scale standardized CAT

(bestowed by a generous source). The data consisted of raw responses and RTs
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from about 2,000 examinees, and the item pool contained about 500 multiple-

choice items that were precalibrated according to 3PLM. The lognormal model

item parameters ða; bÞ were estimated using a modified version of van der

Linden’s (2007) Markov chain Monte Carlo (MCMC) routine that fixed the

3PLM item parameters ða; b; cÞ to the precalibrated values, and the distribution

of t was set to have a mean of 0. All parameters appeared to converge using

10,000 MCMC draws with a burn-in size of 5,000, and the model seemed to fit

well enough for the current application.

For CAT simulation, each examinee’s responses and RTs were generated for

all items. The test length was fixed at L ¼ 30, with the first item chosen ran-

domly in order to calculate initial estimates of yi and ti. As before, estimation

was performed using a combination of MLE and EAP. For ASBT, the item pool

was divided into five strata of about 100 items each, then 6 items were selected in

each successive stage.

Results

Figure 6 shows the results of GMIT with the real data, which exhibit much of the

same patterns as the earlier results with simulated data in Figure 5. First, tt was

minimized and tor was maximized at about v ¼ 0:6, which was the approximate

minimum of the expected RT at the median of t: minðE½TjjmedðtÞ�Þ � 0:6. Sec-

ond, tor and stor were at their minimum at about v ¼ 1:8, which was the approx-

imate median of the expected RT at the median of t: medðE½TjjmedðtÞ�Þ � 1:8.

Third, stt was minimized at about v ¼ 1. Fourth, the trade-off between RMSEðŷÞ
and performance on other criteria were even less salient than with the simulated

data. All things considered, an optimal combination for these real data could be v ¼
1:3 and w ¼ 0:5, which afforded better accuracy than ASBT, kept average testing

time close to MIT, drastically reduced the variability of testing times to near

minimum, and provided a level of item exposure control comparable to ASBT.

Discussion

Continual efforts to refine the item selection algorithm in CAT are not only of

scholarly interest but also of paramount importance to operational testing. It goes

without saying that accurately measuring ability, saving valuable time and

resources, minimizing differential speededness among examinees, and strengthen-

ing test security are all critical considerations for most high-stakes administrations.

In this spirit, the present investigation sought to improve upon the innovative RT-

based item selection methods introduced by Fan et al. (2012). The results of

extensive simulations, with both real and simulated data, provide strong evidence

for the overall superiority of the proposed GMIT over the other evaluated methods.

Ultimately, GMIT with carefully chosen centering and weighting values can

appreciably increase the validity of test scores, with negligible detriment to
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measurement precision, in two distinct aspects: curtailing the likelihood of time

pressure–induced rapid guessing by markedly reducing the mean and variance of

testing times and decreasing the chances of item preknowledge by dramatically

FIGURE 6. Performances of GMIT for real data. The centering values v only apply to

GMIT.
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reducing the mean and variance of test overlap rates. The truly remarkable feature

of GMIT is that all of these benefits can be realized without imposing explicit item

exposure controls or RT constraints (cf. van der Linden, 1999).

The initialization of GMIT for use in practice requires the following steps:

(1) calibrating the item pool with appropriate measurement models for ability

and speed given responses and RTs, respectively; (2) generating examinees

based on a reasonable or empirically motivated assumption about the joint dis-

tribution of ability and speed of the target population; (3) establishing a set of

evaluation criteria; (4) conducting a series of CAT simulations with a range of v

and w values; and (5) selecting the optimal fv;wg according to performance on

the evaluation criteria. If performance is evaluated on two or more criteria that

involve trade-offs, the “optimal” choice ultimately depends on the minimally

acceptable levels on the criteria (e.g., tor 
 0:20) or the user’s rational judg-

ment, which can be done via visual inspection of the results as demonstrated.

Alternatively, if a more objective measure is desired to aid in the decision, it is

possible to construct an optimality index such as the following:

Ofv;wg ¼ �T Zfv;wg; fv;wg 2 V �W ; ð27Þ

where � is a vector of weights and Zfv;wg is a vector of standardized values for each

evaluation criterion given fv;wg. Placing all of the criteria on the same scale

through standardization is necessary to ensure that the weighted composite is not

influenced by the magnitude and spread of the original scales. Provided that lower

values indicate better performance for every criterion, the optimal choice would be

fv;wg that minimizes Ofv;wg, which could be interpreted as a weighted average of

the standardized criteria if the values of � are nonnegative and sum to 1. � would

be specified according to the importance attributed to each criterion in the overall

performance evaluation. As a simple example with the real data results, Table 2

shows an excerpt of rank-ordered Ofv;wg values computed using weights of 1=6 for

each of the six evaluation criteria. According to this evenly weighted index,

fv; wg ¼ f1:4; 0:75g was the most optimal, whereas the previous choice of

fv; wg ¼ f1:3; 0:50g ranked 10th out of 93. The latter choice placed more

emphasis on ability estimation accuracy over the other criteria, but the practical

differences between the two choices were relatively slight nonetheless.

Painstaking efforts were taken to assure that the proposed procedure and out-

come can be generalized to a broad range of item bank structures and test-taking

populations. Although the current investigation was limited to fixed-length CAT

with commonly utilized unidimensional 3PLM and lognormal models under the

hierarchical framework, the flexibility of GMIT allows for easy implementation

and evaluation under a wide variety of schemes. For instance, a recent paper

reported success in utilizing the original MIT method in computerized classifica-

tion testing (CTT) with the sequential probability ratio test (SPRT) stopping rule

(Sie, Finkelman, Riley, & Smits, 2015). As a next step, GMIT could be easily tried
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in the same context with a straightforward modification. Moreover, further scrutiny

is certainly warranted to confirm the usefulness of the technique in operational CAT,

which is frequently constrained by practical requirements such as content balancing

and ordering. This could not be studied at present because the real data at hand did

not contain nonstatistical specifications, but there are few compelling reasons to

suspect a drastic degradation in GMIT’s efficacy under realistic circumstances.

Finally, it would be informative to conduct a separate study comparing GMIT to

other RT-based methods not considered in this article, including various mathemat-

ical optimization approaches (Veldkamp, 2016) and a simplified version of MIT that

uses sample-based average log-RTs (in lieu of model-based expected RTs) with

randomesque exposure control (Y. Cheng, Diao, & Behrens, 2017).

As a supplemental consideration, although BMIT did not prove to be effective in

regard to its originally intended purpose, b-partitioning may have potential in sub-

stantive applications. One such possibility could be abating test anxiety caused by

perceived speededness. Conceivably, time intensive items at the start of a timed test

may elicit subpar performance by those who have not properly “warmed up” and

harbor legitimate fears of running out of time. The serious underestimation of ability

due to such uncharacteristic errors on initial items is well-documented (Chang &

Ying, 2008). Byb-partitioning the item pool and selecting items in stages of increas-

ing b, examinees would start off with short items and gradually progress to longer

items, which may help allay time-induced anxiety and thus improve test validity.

Clearly, empirical studies would need to be conducted to investigate this conjecture.
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TABLE 2.

Average of Standardized Evaluation Criteria, Ofv;wg, for GMIT With Real Data

Rank fv;wg Ofv;wg

1 f1:4; 0:75g �.4746

2 f1:5; 1:00g �.4537

3 f1:5; 0:75g �.4436

4 f1:4; 0:50g �.4182

5 f1:3; 1:00g �.4070

6 f1:6; 0:50g �.4027

7 f1:6; 0:75g �.3935

8 f1:3; 0:75g �.3865

9 f1:9; 0:75g �.3758

10 f1:3; 0:50g �.3708
..
. ..

. ..
.

93 f3:0; 0:75g .5055
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