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Abstract

In this study, a simulation-based method for computing joint maximum likelihood estimates of the

reduced reparameterized unified model parameters is proposed. The central theme of the approach

is to reduce the complexity of models to focus on their most critical elements. In particular, an

approach analogous to joint maximum likelihood estimation is taken, and the latent attribute

vectors are regarded as structural parameters, not parameters to be removed by integration with

this approach, the joint distribution of the latent attributes does not have to be specified, which

reduces the number of parameters in the model.
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Introduction

Cognitive diagnostic models (CDMs) provide diagnostic information about each exami-

nee’s abilities which could lead to finer classification and more efficient remediation.

Many models for cognitive diagnosis have been introduced over the past decades. A

common feature of the model is a matrix that shows the relationship between latent

attributes (i.e., knowledge and skills) and each item’s response, usually referred to as the

Q-matrix. Depending on the relationship, cognitive diagnostic models are classified into
three categories: conjunctive, compensatory, and disjunctive (e.g., Henson, Templin, &

Willse, 2009).

Some examples of the conjunctive models are the deterministic input, noisy and-gate

(DINA) model, the noisy inputs, deterministic and-gate (NIDA) model (e.g. de la Torre,

2009; Junker and Sijtsma, 2001), and the reduced reparameterized unified model (reduced

RUM, Hartz, 2002, Hartz & Roussos, 2008). A well-known disjunctive model is the

deterministic input, noisy or-gate (DINO) model (see Templin & Henson, 2006). A

commonly used compensatory model is the compensatory RUM (see Rupp, Templin, &

Henson, 2010). Of these models, the reduced RUM has received a considerable amount

of scholarly attention because it includes a greater variety of components than other

models, thus giving more flexibility (Hartz & Roussos, 2008).

A variety of possible methods for estimating the reduced RUM have been explored.

One classical approach has treated the person parameters as nuisance parameters and

simply integrated them out of the likelihood equation. This approach, called marginal

maximum likelihood, is thus a function of only the structural (i.e., item) parameters. When

the marginal likelihood is evaluated, the Expectation-Maximization (EM) algorithm

has been used to some effect (e.g., Feng, Habing, & Huebner, 2014). However, it is

sensitive to initial values and can have local maxima (e.g., Doucet, Godsill, & Robert,

2002). Furthermore, it can be a computational burden to deal with high-dimensional

integration in the EM which limits the practicality of this approach. In a simulation

study, Drasgow (1989) found that marginal maximum likelihood estimates are more

accurate than joint maximum likelihood estimates regardless of sample size or test length.

However, obtaining marginal maximum likelihood estimates is a complex task because,

in some cases, the likelihood function for the structural parameters is not available in

closed form and, moreover, may be multimodal (e.g., Doucet, Godsill, & Robert, 2002).

Another approach to estimation is Bayesian estimation of the parameters using prior

distributions on the person parameter, or on both person and item parameters (see Hartz,

2002; Henson, Templin, & Willse, 2009; Rupp, Templin, & Henson, 2010). This

procedure eliminates the problems sometimes encountered in the marginal maximum

likelihood estimation (e.g. Hambleton, Swaminathan, & Rogers, 1991). This approach,

however, has its own difficulties. For instance, the prior specification and prior sensitivity

are important aspects of Bayesian inferences (e.g., Ghosh, Ghosh, Chen, &Agresti, 2000).

In practice, it can be difficult to give a meaningful full prior specification for the reduced

RUM, especially as the number of attributes increases. Furthermore, in the Bayesian
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framework, the homogenous Markov Chain Monte Carlo (MCMC) methods typically

used for the estimation of model parameters are inefficient for maximum a posteriori

estimation because a large amount of the computational burden is spent exploring regions

of low posterior probability (e.g., Andrieu & Doucet, 2000); for the reduced RUM,

MCMC may be prohibitively slow to converge for its complexity. Finally, MCMC

methods are often more suited for integration, not optimization problems (e.g., Jacquier,

Johnnes, & Polson, 2007).

Several alternative strategies for estimating the reduced RUM parameters, which include

the use of simulated annealing (Lim&Drasgow, 2016) and data augmentation (Culpepper

& Hudson, 2017) have been proposed. The method of Joint Maximum Likelihood

Estimation (JMLE) is another procedure that can be used for the reduced RUM. A JMLE

method for cognitive diagnosis models has been proposed (Chiu, Kohen, Zheng, &

Henson, 2016). In the method, Birnbaum’s paradigm (Birnbaum 1968) was implemented:

person parameters and item parameters are considered as two separate sets where one is

assumed to be known and the other is estimated.

Neyman and Scott (1948) showed that when the number of structural parameters increases

with the number of incidental parameters, estimates may not be consistent. Even when

the estimates of structural parameters are consistent, the property of efficiency may

not hold. Lord’s JMLE procedure (1968) is an example of the situation described by

Neyman and Scott, and the consistency of the structural (i.e., item) parameter estimates

has been questionable. In the special case of the Rasch model, however, Haberman

(1997) proved the joint consistency of maximum likelihood estimates of item and person

parameters, obtaining strong consistent estimates of the parameters as the number of

items and examinees both go to infinity. Douglas (1997) also proved uniform asymptotic

consistency in a unidimensional class of kernel-smoothing-based nonparametric IRT

item response function estimation procedures under less restrictive assumptions than

Haberman’s. Empirical results obtained by Lord (1975) and by Swaminathan and Gifford

(1983), for example, showed that the JMLE procedure can give accurate results with

as few examinees as I = 200 provided the number of items J ≥ 60. Hulin, Lissak,
and Drasgow (1982) conducted a Monte Carlo study to investigate the effects of four

sample sizes (I = 200, 500, 1000, or 2000 examinees) and three test lengths (J = 15,

30, or 60 items) on the accuracy of joint parameter estimation. They found that, for a

two-parameter model, there must be at least J = 30 and I = 500, and for a 3-parameter
model, there must be at least J = 60 and I = 1000.

In this study, we propose a JMLE approach for the reduced RUM, which simultaneously

evaluates and optimizes the joint likelihood function for the reduced RUM. This JMLE

approach is carried out by means of a combination of the simulated annealing algorithm

and stochastic simulation of the hidden Markov chain. The central theme of the approach

is to omit variables related to the joint distribution of latent attributes to trim back model

complexity. This algorithm is shown to converge for the set of joint maximum likelihood

parameter estimates under suitable regularity conditions.
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Reduced RUM specification

Let Yij denote the binary item response of the ith examinee to the jth item, i = 1, ..., I,
j = 1, ..., J, with 1 = correct and 0 = incorrect. Each entry αik indicates whether

the ith examinee has mastered the kth attribute (i.e., the kth knowledge or skill), with
αik = 1 indicating examinee i has mastered attribute k and 0 otherwise. The J ×K
Q-matrix describes how the items are related to the attributes. Each entry qjk in the
matrix indicates whether the kth attribute is relevant for the solution of the jth item:
qjk = 1 if the attribute is germane, 0 if not (Tatsuoka, 1983).

The reduced RUM is the most flexible of the aforementioned conjunctive models. The

item response function in the reduced RUM is

P (Yij = 1 | αi,π
∗, r) = π∗

j

K∏
k=1

r
(1−αk)qjk
jk , (1)

where 0 < π∗
j < 1 denotes the probability of a correct response to the jth item for the

ith examinee who possesses and correctly applies all attributes required for that item,
and 0 < rqjk < 1 indicates the penalty to the probability of correct response to item j
for not having mastered the kth attributes.

More formally, the reduced RUM is simply a reparameterization of the generalized Noisy

Inputs, Deterministic and-gate (NIDA) model (e.g., Junker & Sijtsma, 2001), where

P (Yij = 1 | αi, sj , gj) =
∏K

k=1[(1−sjk)
αkg1−αk

jk ]qjk and sjk (the slipping parameter)
is the probability of the examinee failing to correctly apply attribute k in solving item j,
given the examinee has mastered all attribute k, and gik (the guessing parameter) is the
probability of the examinee correctly applying all attribute k in solving item j, given
the examinee has not mastered attribute k. In this light, π∗

j can be reinterpreted as an

item difficulty parameter and rjk can be viewed as an item discrimination parameter for

attribute k.We can see this by setting,

π∗
j =

K∏
k=1

π
qjk
jk =

K∏
k=1

(1− sjk)
qjk , (2)

where the slipping parameter for item j and attribute k is denoted as sjk.

rjk =
gjk

1− sjk
, (3)

where the guessing parameter for item j and attribute k is denoted as gjk.
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Algorithm and properties

Under the assumptions of conditional independence, the joint likelihood L for the item

responses is

L = L(Y |α,β) =

I∏
i=1

J∏
j=1

P (Yij = 1|αi,βj)
Yij [1− P (Yij = 1|αi,βj)]

1−Yij , (4)

where βj = {βjk} denotes the item parameters for item j. The item parameters βj as

well as the person parameters αi are required to be estimated at the same time. The

values of αi and βj that maximize the likelihood L are the joint maximum likelihood

estimates. One approach is to estimate the values of parameters directly by iteratively

setting ∂L
∂αi

= 0, and ∂L
∂βj

= 0 (e.g., Lord, 1968). However, some difficulties can be

encountered. First, there are some cases in which the maximum likelihood estimates or

the likelihood in closed form do not exist (e.g., Hambleton, Swaminathan, & Rogers,

1991). Second, it is a computational burden to iterate between the two sets of partial

derivatives; moreover, the numerical optimization on very high dimensional models

is time consuming as shown in previous studies. Finally, it is challenging to estimate

the standard errors of the maximum likelihood estimates based on the second order

derivatives (e.g., Jacquier, Johnnes, & Polson, 2007).

To avoid these potential problems, the current approach modifies the JMLE method in

three important ways. One is to implement a regularization term for all model parameters.

This is accomplished by establishing uniform (flat) prior distributions, and then obtaining

the maximum a posteriori (MAP) values of the parameters. The assumption of flat priors

for the parameters means that the prior terms for those parameters can be set to unity,

and therefore the MAP updates for α̂i and β̂j are identical to the maximum likelihood

updates for the parameters (e.g., Patz & Junker, 1999) on bounded intervals.

Second, rather than estimate the distribution of αi, each αik is treated as a parameter to

be estimated. This has been problematic in IRT models in which the latent variables are

continuous, because something must be done to fix the scale. However, for cognitive

diagnosis models in which the latent attributes are binary, the scale is solidly pinned

down between the two possible values (0 or 1) in the parameter space. This results in

a more streamlined model and yields simpler Markov chains and consistent results, as

shown in a later section of this paper.

Third, we propose an algorithm that is a combination of the insights of standard MCMC

algorithms and simulated annealing algorithms in the Bayesian framework. The initial

value of this algorithm is obtained from the nonparametric estimator of latent attribute

variables (Lim & Drasgow, 2017). Given the estimates of α, the item parameters are

estimated, and then the estimates of item parameters are used to update the estimates of

α. This procedure is repeated until the convergence criterion is satisfied.

Simulated annealing is an inhomogeneous variant of MCMC used to perform combina-

tional optimization. This method samples from a sequence of density functions whose
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support concentrates itself on the set of maximum likelihood estimates. The power

γ(t), t = 1, ..., T, called the temperature, makes it possible to explore the entire search
space systematically by being increased simultaneously as the number of Markov chain

iterations increases (e.g., van Laarhoven &Arts, 1989). As in simulated annealing, this

proposed algorithm replaces the target joint density π(α,β) as

πγ(t)(α,β) ∝ P (α,β)γ(t)P (α)P (β), (5)

where limt→+∞ γ(t) = ∞.When γ(t) > 1, P (α,β) is raised to the γ(t) power and
the effects of the priors P (α) and P (β) disappear on the range of values (e.g., Jacquier,
Johnnes, & Polson, 2007). Nonetheless, they are necessary to ensure their integrability

without affecting the maximum joint likelihood estimates.

Formally, the proposed algorithm seeks to maximize the joint likelihood in the Bayesian

framework with a constant temperature γ(T ),

πγ(T )(α,β) ∝ Lγ(T )P (α)P (β). (6)

The likelihood term L reappears in this Bayesian formulation, but is now accompanied

by the uninformative prior distributions of the parameters. As it is usually impossible to

sample from the density directly, MCMC methods are used to simulate samples from a

sequence of joint densities, πγ(T ),n(α,β), where n indexes the length of the Markov

Chain.

It is important to compare and contrast this algorithm with the marginal maximum

likelihood (or marginal MAP) estimation methods related to simulated annealing. The

basic idea is to generate a sequence of artificial distributions from a density in which

the latent variables are replicated temperature γ(t) times by data augmentation. Then
the sequence concentrates itself on the set of marginal maxima. For generation, non-

homogenous MCMC algorithms (Andrieu & Doucet, 2000; Doucet, Godsill, & Robert,

2002), original sequential Monte Carlo methods (Johansen, Doucet, & Davy, 2008), and

a standard evolutionary MCMC method (Jacquier, Johannes, & Polson, 2007) have been

employed. These researchers advocate that as the chain goes to infinity, the sequence of

density concentrates itself upon the marginal maximum of structural parameters. Then

the estimates of structural parameters are obtained without resorting to a gradient based

method. Temperature γ(t) is assumed to be increased as the chain increases, especially
in terms of the theoretical foundation.

In contrast, our algorithm estimates the joint maximum likelihood in the Bayesian

framework. The joint density is alternately raised to γ(T ) as in simulated annealing
while the priors are not exponentiated unlike simulated annealing. The initial values of

this algorithm is obtained from a nonparametric approach. The estimates for the values

of parameters are obtained given the estimates of the other parameters. Furthermore, the

joint distribution of binary latent variables does not need to be estimated because each

component is regarded as an individual parameter. Unlike the algorithm presented here,
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the methodologies for marginal maximum likelihood (or marginal maximum a posterior)

require or are suitable only for continuous latent variable models.

To summarize, several practical advantages of this algorithm can be gleaned. First, this

approach does not require estimating the distribution of α as if it is treated simply as

a parameter to be estimated. Second, unlike a Bayesian approach, informative prior

distributions for the parameters are not necessary. Third, the MAP estimates (which are

equivalent to ML estimates given flat priors) are obtained without exploring regions

of low posterior probability or integrating over the incidental parameters. Finally, in

combination with the standard MCMC algorithm, simulated annealing maintains the

speed and reliability of gradient descent algorithms while simultaneously avoiding local

minima (Zomaya & Kazman, 2010).

Convergence properties of the algorithm

Suppose that a function f is defined on a finite set of states S. The purpose of this
proposed algorithm is to find a state x = (α,β) such that f(x) = maxz∈S f(z). Let
G(x, z) denote the generation probability, and x, z ∈ S such that G(x, z) > 0. The
acceptance probability A(x, z) is defined by (13) and (15) below. Let P γ(T ) denote

the transition matrix corresponding to a temperature γ(T ), t = 1, 2, ..., T = Topt < ∞.
Each component P γ(T )(x, z) of P γ(T ) can be defined as G(x, z)A(x, z) for z 6= x,
otherwise, 1− P γ(T )(x, z) for z = x.

The invariant joint density πγ(T )(α,β) can be rewritten as (8) below like the objective

function used in simulated annealing:

πγ(T )(α,β) ∝ P (α)P (β) exp(γ(T )× log(L)). (7)

Then for theMarkov chainn → ∞, the stationary distribution of the time-inhomogeneous
Markov chains is obtained as the result of van Laarhoven and Aarts (1989),

Let S? denote the global maxima set of states. Then

lim
γ(t)→∞

lim
n→∞

P (f(x)t,n ∈ S?) = 1. (8)

Proof See van Laarhoven and Aarts (1989).

Theorem 1 essentially governs the behavior of the SAalgorithm. Under certain conditions

on the matrices G(x, z)A(x, z), the SA algorithm converges to a global maximum with

probability 1 as temperature goes to∞ with Markov chain increases.

Many studies have been conducted to determine the optimal temperature γ(T ) for the
efficiency of simulated annealing. Typically an optimal temperature γ(T ) is experi-
mentally chosen by running simulated annealing until the temperature is frozen at a

particular value (e.g., Cohn & Fielding, 1999); by running homogeneous Markov chains

at each of a number of fixed temperatures, it is possible to determine which temperature

is best, according to an appropriate optimality criterion (e.g., Duong-Ba, Nguyen, &

Bose, 2014).
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This proposed algorithm uses the optimal γ(T ) as a fixed temperature γ(T )(n+1) =
γ(T )n. Then, unlike simulated annealing, this proposed algorithm exhibits as a time-

homogenous Markov chain at the height of max f(x). The temperature which is reached
to a frozen status is considered as the optimal γ(T ) and it is estimated as a parameter in
this proposed algorithm. The convergence property of a homogeneous Markov chain

has been well investigated in Feller (1950) and others. The homogeneous Markov chain

generated by P γ(T ) has a stationary distribution. Then

lim
n→∞

P{max f(x)n ∈ S?) = 1. (9)

Proof See Mitra, Romeo, and Sangiovanni-Vincentelli (1985).

MCMC algorithm

For the proposed approach, the Metropolis-Hastings algorithm with simulated annealing

is used for sampling from πγ(T )(α,β) ∝ P (α,β)γ(T )P (α)P (β). Like Birnbaum’s
two stage paradigm (Birnbaum, 1968), this algorithm starts with the estimated initial

values of latent attribute variableα by using a nonparametric technique proposed by Lim

and Drasgow (2017). In this approach, the uniform prior distributions are established

over the parameters.

Step 1. Estimate the initial value of this algorithm: person parameter α(0)

A nonparametric method (Lim & Drasgow, 2017) is used to estimate the initial value of

this algorithm. The method estimates the person parameter α(0) based on the Hamming

distance between ideal and observed response patterns. This approach consists of two

phases, the computation of all possible ideal response vectors and the classification

phase.

The ideal responses ηijnoncompensatory are defined as
∏K

k=1 αik
qjk , ηij disjunctive are defined

as 1 −
∏K

k=1(1 − αik)
qjk , and ηijcompensatory are defined as rounding of

∑K
k=1(α̂ik ×

qjnewck)/K for examinee i and assessment item j. All possible ideal response vectors

η1,η2, ...η2K are constructed from all 2K possible patterns for αi. In the classification

stage, the Hamming distances between Yi and each of ηm, for m = 1, 2, ...2K , are
computed by simply counting the number of times two vectors disagree as given by

D(Yi,αm) =

J∑
j=1

| Yij − ηmj | . (10)

The estimator is obtained by minimizing this distance over all possible attribute patterns,

α̂i = arg min
m∈{1,2,...,2K}

D(Yi,αm). (11)
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The theoretical justification is that the true attribute vector minimizes the expected

distance between Yi and ηm, under some general conditions on the underlying model.

Step 2. Draw β
γ(T )
{n=1,2,...,N}|α(0) ∼ P (βγ(T )|α(0),Y ) ∝ P (Y |α,βγ(T ))P (β).

Given the estimates of person parameter α, the Markov chains of item parameter β =
{π∗

j , rjk} are obtained until no values are updated. Here βγ(T ) is considered as the
γ(t), t = 1, ..., T independent copies of β. That is,

P (βγ(T )|α,Y ) ∝
T∏

t=1

(Y |α,βγ(t))P (β). (12)

Instead of generating γ(T ) copies, simulated annealing is used for this algorithm. The
simulated annealing provides additional flexibility and efficiency in generating γ(T )
copies of item parameters β. More specifically, (12) is obtained by

(β
γ(T )
(n+1),β

γ(T )
(n) ) = min{1, exp(γ(T )×(logP (β(n+1)|α,Y ))− log(P (β(n)|α,Y ))))}

(13)

Updating π∗
j for j = 1, 2, ..., J.

A candidate value π∗?
j is drawn from the uniform distribution on the interval (π∗l −

δ, π∗h + δ), where π∗l and π∗h are, respectively, the lower bound and the higher bound

of baseline parameters. The π∗l and π∗h should be no smaller than .5 and no greater

than 1, respectively because there is an order constraint such that rjk is smaller than
π∗
j (Rupp, Templin, & Henson, 2010). In the studies below, δ = .1 was used in the

following simulation studies. Compute the acceptance probability,

rn = exp(γ(T )×(log(L(Yj |α(n−1), π∗?
j , r

(n−1)
jk ))−log(L(Yj |α(n−1), π

∗(n−1)
j , r

(n−1)
jk )))).
(14)

Let π
∗(n)
j = π∗?

j with probability min(1, rn), otherwise let π
∗(n)
j = π

∗(n−1)
j .

Updating rjk for j = 1, 2, ..., J, for k = 1, 2, ...,K
A candidate value for the penalty parameter r?jk is drawn from the uniform distribution.

The lower boundary of the rjk should be 0 and the higher boundary of this parameter is
1. Compute

rn = exp(γ(T )×(log(L(Yj |α(n−1), π
∗(n−1)
j , r?jk))−log(L(Yj |α(n−1), π

∗(n−1)
j , r

(n−1)
jk )))).
(15)

Let r
(n)
jk = r?jk with probability min(1, rn), otherwise let r

(n)
jk = r

(n−1)
jk .
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Step 3. Draw α
γ(T )
ik,{1,2,...,N}|β(0) ∼ P (α

γ(T )
ik |β(0),Y ) ∝ P (Y |αγ(T )

ik ,β)P (αik).

Now given the estimated item parameters β from the previous step, the estimates of

person parameter α are updated. The draws of the person parameter α are generated

until no values are updated during an iteration like Hartz (2002). The independent draws

of each γ(t), t = 1, ..., T αik are,

P (α
γ(T )
ik |β,Y ) ∝

T∏
t=1

(Y |αγ(t)
ik ,β)P (αik). (16)

This is obtained by

(α
γ(T )
ik,(n+1), α

γ(T )
ik,(n)) = min

{
1, exp(γ(T )× (log(P (αik,(n+1)|β,Y ))− log(P (αik,(n)|β,Y )))

}
(17)

Updating αik for i = 1, 2, ..., I, k = 1, 2, ...,K

For α?
ik inαi, a candidate value is drawn from the binomial distribution (1, .5). Compute

the acceptable probability,

rn′ = exp(γ(T )×(log(L(Yi|α?
ik,pi

∗(n′−1), r(n
′−1)))−log(L(Yi|α(n′−1)

i ,π∗(n′−1), r(n
′−1))))).

(18)

Let α
(n′)
ik = α?

ik with probability min(1, rn′), otherwise let α
(n′)
ik = α

(n′−1)
ik .

Note that flat prior distributions are used throughout. Steps 2 and 3 are repeated until a

stopping criterion is met. As in simulated annealing, the stop criterion is either determined

by fixing the number of temperature schedule values, or by terminating operation of the

algorithm if the Markov chains are identical for a number of chains (e.g., van Laarhoven

&Aarts, 1989).

Determining γ(T )

In the typical implementation of the standard simulated annealing algorithm, the temper-

ature increases with the Markov chains, or is constant for a finite length Markov chain at

each increasing temperature schedule. The weakness of this temperature schedule is very

slow convergence, especially if the cost function is expensive to compute; for situations

where there are few local minima, simpler methods work better. For these reasons, in

this study, other than the standard temperature schedule, a constant temperature γ(T ) =
1, 5, 10, or 20 is proposed as the Temperature schedule. In practice, we suggest that a

constant temperature is estimated as a parameter. Like the standard temperature schedule,

the temperature is determined by a certain temperature in which the search converges to

a frozen state (e.g., van Laarhoven &Aarts, 1989).
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Simulation study

A simulation study was carried out to evaluate the performance of the proposed MCMC

algorithm under various conditions. Four conditions of item length J (short = 25, long

= 50) and size of sample I (small = 250, large = 1000) were considered. AQ-matrix
for J = 25 was randomly generated from 2K − 1 possible q-vectors as presented in
Table 1. The Q-matrix for J = 50 was obtained by duplicating the matrix two times.

Table 1:

Correctly Specified Q (K = 7).

Item K = 7 Item K = 7

1 0 0 1 1 1 1 1 14 1 1 0 0 0 0 0

2 0 0 1 0 1 1 0 15 1 0 1 0 0 0 1

3 1 0 0 1 0 0 0 16 1 1 0 0 0 1 1

4 1 1 0 0 1 1 1 17 0 0 0 1 0 0 1

5 0 1 1 1 1 0 0 18 1 0 1 0 0 0 0

6 1 0 0 0 1 0 1 19 0 0 1 0 1 0 0

7 0 0 0 1 1 1 1 20 0 1 0 0 1 1 0

8 0 0 1 1 0 0 1 21 0 0 0 0 0 0 1

9 1 1 0 1 0 0 1 22 1 0 1 0 1 1 1

10 0 0 1 0 1 1 0 23 0 1 0 0 0 0 1

11 0 0 1 0 1 0 1 24 1 1 1 0 1 1 1

12 1 0 0 0 0 0 1 25 1 1 1 0 1 1 1

13 0 1 1 0 1 1 0

Each item response data set was generated from the reduced RUM model. The person

parameters α were sampled from the bivariate Normal distribution with mean vector

µ = (0, 0, 0, 0, 0, 0, 0) and covariancematrix
∑

with 1’s on the diagonal and off-diagonal

elements of .3. Binary traits were constructed as in previous studies (e.g., Lim&Drasgow,

2017).

αik =

{
1, if θik ≥ Φ−1 k

K+1 ;

0, otherwise

The base item parameter π∗
j was sampled from the uniform distribution (.6, 1), and the

attribute-level penalty parameter rjk was sampled from a uniform distribution(0, .5).

The proposed MCMC algorithm was run with four different values of γ(T ): 1, 5, 10, and
20. The convergence of item parameters was evaluated by the criterion of normality. The

convergence of person parameters was estimated indirectly by evaluating the agreement

rates between the true values of α and estimated values α̂ (Hartz, 2002). The estimates

were compared with the estimates obtained by the fully Bayesian model estimation

software called Arpeggio (DiBello & Stout, 2010).

Results

Table 2 reports the RMSE of item parameters for four different conditions. Increasing test

length J and sample size I decreased the RMSE for all parameters, and the results are as
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expected. However, comparing the results of the fully Bayesian analysis (Arpeggio) with

the estimates from the proposed algorithm, some differences can be seen. Specifically,

the new method has lower RMSEs, particularly when γ(T ) = 20.

Table 2:

RMSE of Item Parameters

Condition Parameter Arpeggio γ(T ) = 20 γ(T ) = 10 γ(T ) = 5 γ(T ) = 1
J = 25, I = 250 Base .097 .076 .081 .084 .110

Penalty .238 .134 .144 .170 .172

J = 25, I = 1000 Base .043 .075 .077 .077 .089

Penalty .162 .100 .109 .110 .119

J = 50, I = 250 Base .098 .074 .087 .092 .110

Penalty .177 .139 .145 .151 .152

J = 50, I = 1000 Base .045 .039 .042 .052 .056

Penalty .117 .098 .104 .110 .109

The theoretical convergence results for simulated annealing indicate that, as γ(T ) in-
creases, the draw will converge to the joint maximum likelihood estimate. In practice,

these results would not be very useful if an inordinately high value of γ(T ) was required
for the algorithm to approach the joint maximum likelihood estimate. This study em-

pirically shows that this is not the case. This algorithm was quite effective for even the

moderate values of γ(T ) = 10 or 20.

Figure 1 shows the draws of the item base parameter π∗
j for the four runs of the algorithm

with γ(T ) = 1, 5, 10, and 20. The horizontal red lines show the true parameter value.

Each draw of item parameters is conditional on the person parameter α and the penalty

parameter rjk As γ(T ) increases, the variance of draws decreases and the sequence of
draws gets closer to the true values.

Figure 1:

Time Plot of Item 2 Base Parameter in J = 50, I = 1000
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Figure 2 shows the draws of item penalty parameter rjk. As in the previous plots, the
horizontal lines denote the true item parameter value. One interesting finding is that

the sequence of draws is closer to the true value of the parameter in the condition of

γ(T ) = 10 than γ(T ) = 20, albeit with greater variance. This finding confirms the
results of Mitra, Romeo, and Sangiovanni-Vincentelli (1986) concerning the optimal

γ(T ). However, this results show the potential problem of this approach: the chain can

be biased (trapped in a local maximum) although it has less variance.

Figure 2:

Time Plot of Item 2 and Attribute 6 Penalty Parameter in J = 50, I = 1000
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The proportion of the times for which the true αi and the estimated α̂i agreed was

summarized for each condition in two different ways: one was the Component-wise

Agreement Rate (CAR)= (
∑

i=1

∑
k=1 |αik = α̂ik |)/(I ×K), and the other one was

the Vector-wise Agreement Rate (VAR) = (
∑

i=1 |αi = α̂i|)/I . The CAR and VAR

between the true α and estimated α̂ obtained from both methods are reported in Table 3.

The component-wise agreement rates of JMLE are relatively consistent and reasonably

high (i.e., larger than .897) regardless of J and I unlike the results of the Fully Bayesian
model. The estimates from Arpeggio for the condition of J = 50 and I = 1000 were
low.

Analysis of fraction subtraction data with reduced RUM

As an illustration of the model with real data, the reduced RUM model with the proposed

algorithm was fitted to the fraction subtraction data that includes the item responses

to 20 items with 8 necessary attributes from 536 examinees. The data were originally

collected and analyzed by Tatsuoka (1990) and have been analyzed in numerous studies

(e.g., de la Torre & Douglas, 2004). Here we use the Q-matrix in Table 4 for the data
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Table 3:

Agreement Rates between α̂ and α
Condition Parameter Arpeggio γ(T ) = 20 γ(T ) = 10 γ(T ) = 5 γ(T ) = 1
J = 25, I = 250 CAR .798 .899 .874 .871 .840

VAR .280 .399 .388 .384 .322

J = 25, I = 1000 CAR .871 .897 .877 .872 .828

VAR .401 .409 .393 .394 .327

J = 50, I = 250 CAR .936 .968 .949 .950 .947

VAR .648 .656 .624 .616 .632

J = 50, I = 1000 CAR .916 .953 .913 .929 .906

VAR .603 .598 .574 .568 .535

that appeared in de la Torre and Douglas (2004). The specified attributes are (1) Convert

a whole number to a fraction, (2) Separate a whole number from fraction, (3) Simplify

before subtracting, (4) Find a common denominator, (5) Borrow from whole number

part, (6) Column borrow to subtract the second numerator from the first, (7) Subtract

numerators, and (8) Reduce answers to simplest form.

Table 4:

Q for the Fraction Subtraction Data.

Item K = 8 Item K = 8

1 0 0 0 1 0 1 1 0 11 0 1 0 0 1 0 1 0

2 0 0 0 1 0 0 1 0 12 0 0 0 0 0 0 1 1

3 0 0 0 1 0 0 1 0 13 0 1 0 1 1 0 1 0

4 0 1 1 0 1 0 1 0 14 0 1 0 0 0 0 1 0

5 0 1 0 1 0 0 1 1 15 1 0 0 0 0 0 1 0

6 0 0 0 0 0 0 1 0 16 0 1 0 0 0 0 1 0

7 1 1 0 0 0 0 1 0 17 0 1 0 0 1 0 1 0

8 0 0 0 0 0 0 1 0 18 0 1 0 0 1 1 1 0

9 0 1 0 0 0 0 0 0 19 1 1 1 0 1 0 1 0

10 0 1 0 0 1 0 1 1 20 0 1 1 0 1 0 1 0

Unlike the simulation study, the optimal γ(T ) was empirically determined by searching
the uniform simulated annealing schedule until reaching the frozen value. Parameter

estimates were obtained by estimating the mode of iterations from the proposed method

as in the simulation study. The results were compared with the values from the fully

Bayesian MCMC algorithm obtained with the Arpeggio program (DiBello & Stout,

2010).

Results

Table 5 shows the proportion of attribute mastery and non-mastery for each attribute

from both methods. The estimates from the JMLE indicate slightly higher proportions

of mastery over all attributes (i.e., the overall mean difference is .051).

The base π∗
j and penalty rjk item parameter estimates are reported in Table 6 below.
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Table 5:

Attribute Mastery or Non-mastery Rates for Individual Attributes.

Attribute Number of items Mastery Proportion Non-mastery Proportion

JMLE Full JMLE Full

1 3 .468 .498 .532 .502

2 13 .806 .593 .194 .407

3 3 .457 .496 .543 .504

4 5 .629 .578 .371 .422

5 8 .578 .483 .422 .517

6 2 .537 .631 .463 .369

7 19 .825 .782 .175 .218

8 3 .713 .543 .287 .457

Mean .627 .576 .373 .424

The estimates of base parameters π∗
j obtained from both methods were similar, and their

mean difference was .005. However, the values of the penalty parameter were relatively

different. The estimates from the fully Bayesian model were larger than those from the

proposed algorithm. The reduced RUM has an order constraint in which rjk is smaller
than π∗

j (Rupp, Templin, & Henson, 2010). However, the estimates π̂∗
j from the fully

Bayesian model were sometimes larger than the base parameters r̂jk (i.e., for Item 4,

π∗
4 = .903, but r42 = .966, r47 = .933).

Discussion

In this study, an MCMC algorithm is proposed for joint maximum likelihood estimation

of parameters of the reduced RUM. This MCMC algorithm has the advantage of the

standard MCMC algorithm and simulated annealing simultaneously. The significance of

this approach is that it enables researchers to trim back model complexity by considering

each α as an individual parameter to be estimated; thus it is possible to estimate the item

parameters and person parameters simultaneously.

As expected, as γ(T ) slightly increased and the variance of draws was reduced. The
estimates of each model parameter were relatively consistent regardless of the sizes of

sample I and item J . This indicates that the approach is appropriate for estimation with
small samples and relatively few items. Of course increasing I and J improves results.

However, it is unreasonable to determine the performance of the algorithm by comparing

the estimates of model parameters given each γ(T ) = 1, 5, 10, 20 with their true values
because as γ(T ) increases up to the optimal value, the draws will be closer to the true
values (e.g., Jacquier, Johannes, & Polson, 2007).

Future research might include simulation using more attributes. In addition, the optimal

temperature γ(T ) for each cognitive diagnosis model could be examined empirically. At
the present time, however, the newMCMC algorithm appears to be a promising approach

for joint maximum likelihood estimation of the parameters of cognitive diagnosis models.
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