
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=hsem20

Structural Equation Modeling: A Multidisciplinary Journal

ISSN: 1070-5511 (Print) 1532-8007 (Online) Journal homepage: https://www.tandfonline.com/loi/hsem20

New Effect Size Measures for Structural Equation
Modeling

Brenna Gomer, Ge Jiang & Ke-Hai Yuan

To cite this article: Brenna Gomer, Ge Jiang & Ke-Hai Yuan (2019) New Effect Size Measures
for Structural Equation Modeling, Structural Equation Modeling: A Multidisciplinary Journal, 26:3,
371-389, DOI: 10.1080/10705511.2018.1545231

To link to this article:  https://doi.org/10.1080/10705511.2018.1545231

Published online: 18 Dec 2018.

Submit your article to this journal 

Article views: 491

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=hsem20
https://www.tandfonline.com/loi/hsem20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10705511.2018.1545231
https://doi.org/10.1080/10705511.2018.1545231
https://www.tandfonline.com/action/authorSubmission?journalCode=hsem20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=hsem20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/10705511.2018.1545231&domain=pdf&date_stamp=2018-12-18
http://crossmark.crossref.org/dialog/?doi=10.1080/10705511.2018.1545231&domain=pdf&date_stamp=2018-12-18


New Effect Size Measures for Structural Equation
Modeling

Brenna Gomer,1 Ge Jiang,2 and Ke-Hai Yuan1
1University of Notre Dame

2University of Illinois Urbana Champaign

Effect size is crucial for quantifying differences and a key concept behind Type I errors and
power, but measures of effect size are seldom studied in structural equation modeling (SEM).
While fit indices such as the root mean square error of approximation may address the
severity of model misspecification, they are not a direct generalization of commonly used
effect size measures such as Cohen’s d. Moreover, with violations of normality and when
a test statistic does not follow a noncentral chi-square distribution, measures of misfit that are
defined through the assumed distribution of the test statistic are no longer valid.

In this study, two new classes of effect size measures for SEM are developed by generalizing
Cohen’s d. The first class consists of definitions that are theoretically equivalent to FMLðΣ0;ΣðθÞÞ,
the population counterpart of the normal-distribution-based discrepancy function. The second class
of effect size measures bears a stricter resemblance to Cohen’s d in its original form. Several
versions of these generalizations are investigated to identify the one that is least affected by sample
size and population distribution but most sensitive to model misspecification. Their performances
under violated distributional assumptions, severity of model misspecification, and various sample
sizes are examined using both normal maximum likelihood estimation and robust M-estimation.
Monte Carlo results indicate that one measure in the first class of effect size measures is little
affected by sample size and distribution while preserving sensitivity to model misspecification and
thus is recommended for researchers to report in publications.

Keywords: Cohen’s d, effect size, model fit, model misspecification

INTRODUCTION

There have been many developments related to fit
indices in the structural equation modeling (SEM) lit-
erature, especially regarding their use in null hypothesis
significance testing (NHST) (Cheng & Wu, 2017; Hu &
Bentler, 1999; Zhang & Savalei, 2016). However, the
topic of effect size measures is equally important and
has been neglected with few exceptions (Maydeu-
Olivares, 2017; Yuan & Marshall, 2004). In this article,
we propose two new classes of effect size measures to
fill this gap. These measures are inspired by Cohen’s
d and target overall model misspecification. Effect size

measures that target model misspecification should be
developed for two reasons.

First, researchers rely on effect size measures to
supplement information gained from NHST. The level
of significance of a test statistic does not indicate how
much the model deviates from the population, which is
often of greater substantive interest. Due to this limita-
tion, some authors have advocated discontinuing signif-
icance tests altogether in favor of point estimates and
confidence intervals (Schmidt & Hunter, 1997; Steiger
& Fouladi, 1997).

Second, hypothesis tests in the SEM framework can
reject good models simply due to large sample size or
non-normally distributed data (Bentler & Yuan, 1999;
Fouladi, 2000; Hu, Bentler, & Kano, 1992; Nevitt &
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Hancock, 2004; Savalei, 2008; Tanaka, 1987). Treating
NHST as the major authority on a model’s usefulness is
worrisome. Effect size measures that are relatively unaf-
fected by these factors can reduce this dependency and
give a more complete picture.

Aren’t fit indices effect size measures?

Current practice often treats fit indices as effect sizes, and
while they do assess the severity of model misspecification,
they cannot be used as effect sizes in their current form for
several reasons.

They are used in hypothesis testing

First, and most importantly, fit indices currently operate
in the context of null hypothesis testing and their cutoff
values have been refined to control rejection rates, not to
describe the misspecification size of the model (Hu &
Bentler, 1999). While their original purpose was to describe
the goodness of fit of a model (Bentler, 1990; Bentler &
Bonett, 1980; Tucker & Lewis, 1973), they now play a role
in NHST. This is not surprising since TML has severe
limitations making it an unreliable test statistic (Bentler &
Bonett, 1980). However, an effect size measure should not
be simultaneously used for the purpose of hypothesis test-
ing and as an effect size. Not only is this statistically
inappropriate, it negates the usefulness of an effect size
measure as a supplement to a hypothesis test.

Assumptions are often violated

Second, real data often violate the distributional assump-
tions underlying many fit indices. It has been said that
normally distributed data are as rare as unicorns (Micceri,
1989). In the presence of non-normal data, fit indices such
as the root mean square error of approximation (RMSEA)
that are defined through the χ2 distribution of the test
statistic TML are no longer valid (Yuan, 2005).

Their performance is unreliable

Third, the values of fit indices are influenced by factors
other than model misfit even when their underlying assump-
tions are satisfied. Some of these factors include model
complexity, sample size, degrees of freedom, ratio of sample
size to the number of variables, and even the magnitude of
factor loadings (Moshagen & Auerswald, 2017; Shi, Lee, &
Terry, 2018; Yuan, Jiang, & Yang, 2018). Because the influ-
ence of these factors varies from model to model, a one-size-
fits-all approach to cutoff values will result in inconsistent
conclusions when applied to different types of models
(Beauducel & Wittmann, 2005; Fan & Sivo, 2005; Marsh,
Hau, & Wen, 2004; West, Taylor, & Wu, 2012; Yuan, 2005).

While we have stated that fit indices cannot be used as
effect size measures in their current form, we do not claim

that fit indices can never be used as effect size measures.
Indeed, their original goal to capture goodness of fit is an
essential feature of an effect size measure. However, their
use in null hypothesis testing is now somewhat entrenched
and their limitations are concerning. With some modifica-
tion and willingness to change old habits, it may be possi-
ble to recover the original use of fit indices as goodness-of-
fit measures and apply them to real data.

However, in this article, we propose two classes of novel
effect size measures that can be applied without changing
current practice. Our contribution is to introduce direct
generalizations of Cohen’s d to SEM, a classic measure of
effect size that currently has no counterpart in this area. The
effect size measures we propose are global measures of
model misspecification.

The remainder of this article is organized as follows. First,
we define two new classes of effect size measures. Second, we
describe the procedure of a Monte Carlo study investigating
the performance of these new measures. Third, we present the
results of the simulation study. Fourth, we develop prelimin-
ary practical guidelines for the best effect size measure and
give two empirical examples. Last, we discuss our overall
findings and recommendations.

NEW EFFECT SIZE MEASURES

In this section, we present two new classes of effect
size measures for SEM. We will denote matrices as
bold-face capital letters and vectors as bold-face lower-
case letters. We begin with a brief discussion of our
evaluation criteria. Next, we show how the concept of
Cohen’s d in combination with the evaluation criteria
motivates the general form of our new measures. Then,
we discuss the definitions of the new effect size mea-
sures as population parameters. We end this section
with a brief note on possible substitutions of test statis-
tics and a discussion on obtaining point estimates and
confidence intervals for the effect size measures.

Evaluation criteria

In our view, sensitivity to size of model misspecification
and logical justification are strict requirements for
a valid effect size measure. In addition to these criteria,
an effect size measure should be sample size and model
size resistant so that its value reflects the severity of
model misspecification and little else. A reliable effect
size measure is applicable under a variety of underlying
population distributions or is robust to distributional
assumption violations. Ideally, it will also facilitate
easy interpretation.
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Effect size measures concept

A classic effect size measure is Cohen’s d, a standardized
mean difference between two groups (Cohen, 1988). It is
a popular measure that has an intuitive meaning and forms
the logic behind the two new classes of effect size measures
we develop in this article. By generalizing the formula of
Cohen’s d to SEM, we aim to minimize the effects of
sample size and population distribution while preserving
sensitivity to the size of model misfit. This section
describes how we translated Cohen’s d to SEM. We will
begin in the context of SEM and briefly introduce relevant
background needed to construct our effect size measures.
Next, we will introduce Cohen’s d and show how we
translated its formula into two new classes of effect size
measures.

In Cohen’s d, the numerator is simply the difference of
two univariate sample means. However, we have no direct
translation to this in SEM. SEM models are multivariate in
nature and often the analysis is focused on the covariance
structure rather than the mean structure. Instead of the
sample mean, the numerical summary that is typically
used for an SEM model is the test statistic TML:

TML ¼ ðN � 1ÞFMLðS;Σðθ̂ÞÞ (1)

where N is the number of observations and FMLðS;Σðθ̂ÞÞ is
the estimated discrepancy from the maximum likelihood
discrepancy function. The discrepancy function at the
population level is given by

FMLðΣ0;ΣðθÞÞ ¼ trðΣ0Σ�1ðθÞÞ � log Σ0Σ�1ðθÞ�� ��� p (2)

where p is the number of manifest variables. Here, the
population covariance matrix Σ0 is replaced by the sample
covariance matrix S, and the vector of model parameters θ
in the model-implied covariance matrix ΣðθÞ is replaced by

its estimate θ̂. We will refer to the discrepancy at the
population level FMLðΣ0;Σðθ�ÞÞ as F0, where θ� is the
population counterpart of θ and obtained by minimizing
the function in equation (2).

The discrepancy is a single value that quantifies the
difference between the hypothesized model structure and
what is observed in the sample by comparing the sample
covariance to the covariance under the working model.
Statistics such as TML that use the discrepancy may provide
a suitable single number summary of an SEM model, which
is multivariate in nature. Other such statistics include the
rescaled test statistic TRML (Satorra & Bentler, 1988).

We will introduce TRML here because we use its features
to construct some effect size measures in the next section.
TRML is an adjustment to TML and is given by

TRML ¼ TML=r (3)

where r is a correction factor that accounts for violation
of normality via the sample fourth-order moments of the
observed data xi and the particular model structure.

Specifically, r is given by trðĤΓ̂Þ=ðp� � qÞ, with p� ¼
pðpþ 1Þ=2 and q equal to the number of free parameters.

Γ̂ is the estimate of Γ, the asymptotic covariance matrix

of yi ¼ vech½ðxi � μÞðxi � μÞ0�. Γ̂ contains the sample
fourth-order moments and thus reflects the distribution

of xi or distributional violations against normality. Ĥ is

the estimate of H ¼ W�W _σð _σ0W _σÞ�1 _σ0W, where
W ¼ 2�1D0

p½Σ�1 � Σ�1�Dp, Dp is a p2 � p� duplication
matrix (Magnus & Neudecker, 1988), � denotes the
Kronecker product, and _σ denotes the derivative of
vechðΣðθÞÞ with respect to θ and evaluated at the popu-
lation value. The operator vechð�Þ on a symmetric matrix
yields a vector that contains the non-duplicated elements
of the matrix. H is also known as the residual weight
matrix and reflects the particular model structure (Bentler
& Dudgeon, 1996).

Thus, test statistics such as TML and TRML describe
important features of model fit and may substitute the
sample mean in Cohen’s d. Note that this does not obligate
us to make any distributional assumptions.

The numerator of Cohen’s d is a difference of means
between two samples under comparison. In a two-sample t-
test,

H0 : μ1 ¼ μ2 or μ1 � μ2 ¼ 0

H1 : μ1�μ2 or μ1 � μ2�0

where μ1 and μ2 are population means corresponding to the
two groups. Cohen’s d is given by

d ¼ �x1 � �x2
s

(4)

where s is the pooled standard deviation, �x1 is the sample
mean of the first group, and �x2 is the sample mean of
the second group. We denote the population version of
Cohen’s d as δ given by

δ ¼ μ1 � μ2
σ

(5)

where σ is the common population standard deviation. This
can be conceptualized more generally as

δ ¼ μ1 � μ2 � 0

σ

¼ E½ð�x1 � �x2Þ H1� � E½ð�x1 � �x2Þj jH0�
SD

(6)
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where the notation E½ð�x1 � �x2ÞjH1� denotes the expected
difference between �x1 and �x2 under the alternative hypoth-
esis H1. The notation E½ð�x1 � �x2ÞjH0� denotes this differ-
ence under the null hypothesis H0. Our generalizations to
SEM are inspired by this form. In the example, �x1 � �x2 is
the statistic of interest, but in SEM, this idea corresponds to
the discrepancy function FML. In order to describe the
behavior of FML by a commonly used probability distribu-
tion, it needs to be multiplied by N � 1 so that the resulting
TML asymptotically follows a χ2 distribution under normal-
ity. Under non-normality, modifications of this statistic
have been developed which still have the same conceptual
meaning.

While in the two-sample t-test example the standard
deviation standardizes the mean difference, TML is already
standardized when distributional assumptions hold. When
they do not hold, there is no universally applicable adjust-
ment that will standardize it. Because of this, we translate
the idea of a standardized mean difference in two ways
which forms the basis for the two classes of effect size
measures.

The first class of effect size measures resembles the
form

EðTML H1Þ � EðTMLj jH0Þ
N � 1

� �1=2

(7)

Dividing by N � 1 drastically reduces the impact of sample
size. With this, the square root creates some relation to the
noncentrality parameter which we will discuss further in
the next section. The second class of effect size measures
has the form

EðTML H1Þ � EðTMLj jH0Þ
SDðTMLjH0Þ (8)

This mimics the original formula of Cohen’s d in equation
5 more closely. We will introduce the definitions of differ-
ent effect size measures within the two classes in the
following section.

Definitions of effect size measures

In this section, we define two new classes of effect size
measures. We begin with the definitions for the effect
size measures in each class as population parameters.
Then, we discuss possible substitutions of the test sta-
tistic. Finally, we provide an overview of how to obtain
point estimates and confidence intervals of the effect
size measures.

First class of effect size measures

The first class of effect size measures is characterized by
the form given in equation 7. The first effect size measure
in this class is given by

E1 ¼ ½EðTML H1Þ � EðTMLj jH0Þ�
½ðN � 1Þ � ðVARðTMLjH1Þ � 2df Þ�1=2=2

(9)

where df denotes the model degrees of freedom. This
moderately differs from the form of equation 7: The
numerator is outside of the square root and the denomi-
nator can be interpreted as a difference of variances. The
benefit of constructing E1 in this way is that it is theore-
tically equivalent to

ffiffiffiffiffi
F0

p
if no assumptions are violated.

Under the normality assumption, TMLjH0 follows a central
χ2 distribution with mean df and variance 2df . Under this
assumption, TMLjH1 approximately follows a noncentral χ2

distribution with mean df þ λn and variance 2ðdf þ 2λnÞ,
where λn ¼ ðN � 1ÞF0. Then, EðTMLjH1Þ � df þ λn,
EðTMLjH0Þ � df , and VARðTMLjH1Þ � 2df þ 4λn. This
yields

E1 ¼ df þ λn � dfffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p ffiffiffiffiffi
λn

p ¼
ffiffiffiffiffi
λn

pffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p ¼
ffiffiffiffiffi
F0

p

Defining the effect size as equation 9 also allows for greater
flexibility in conditions when assumptions are violated.

The next effect size measure is

E2 ¼ E
maxðTML � df ; 0Þ

N � 1

� �1=2
" #

(10)

Unlike equation 7, this effect size measure assumes directly
that EðTMLjH0Þ ¼ df . Because TML � df can be less than 0
when the distribution of the data has light tails, the numera-
tor is adjusted to maxðTML � df ; 0Þ.

The third effect size measure is

E3 ¼ EðTML H1Þ � EðTMLj jH0Þ
N � 1

� �1=2

(11)

Like equation 7, this effect size measure standardizes by using
N � 1 and does not explicitly assume a distribution for TML.
When applied to real data, it is possible for the numerator to be
less than 0 due to sampling variability when the model is
correctly specified or if the misspecification is very small. In
these cases, E3 should be taken to be 0.

The fourth effect size measure is

E4 ¼ E
TML � trðHΓÞ

N � 1

� �1=2
" #

(12)
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E4 assumes that EðTMLjH0Þ ¼ trðHΓÞ. It has been shown
that with sufficiently large N , EðTMLjH0Þ ¼ trðHΓÞ where
H and Γ are as we previously defined (Satorra & Bentler,
1988). Under normality, trðHΓÞ ¼ df and thus EðTMLjH0Þ
is as expected under a central χ2 distribution. However,
trðHΓÞ can be greater than df when the normality assump-
tion is violated. For example, when the underlying popula-
tion follows a multivariate t-distribution, trðHΓÞ is equal to
df multiplied by the relative kurtosis of the t-distribution.

The next effect size measure is

E5 ¼ E
TRML � df
N � 1

� �1=2
" #

(13)

This measure differs from equation 7 in the use of the
rescaled statistic TRML instead of TML and in assuming
EðTRMLjH0Þ ¼ df . However, this assumption may not be
realistic in practice (Yuan et al., 2018).

The last effect size measure in the first class is

E6 ¼ EðTRML H1Þ � EðTRMLj jH0Þ
N � 1

� �1=2

(14)

This is identical to E3 except that it replaces TML with TRML.
All the effect size measures in the first class have some

theoretical equivalency to F0 if distributional assumptions
are satisfied. Some measures make these assumptions expli-
citly in their formulas (E1, E2, and E5) while others (E3, E4,
and E6) do not. When the assumptions do not hold, we
hypothesize that the measures whose definitions do not rely
on distributional assumptions will perform better. Note that
the definitions of E2, E4, and E5 place the expectation outside
of the square root. This may make them easier to execute and
more suitable for meta-analysis than the other candidates.
We display these effect size measures in Table 1 for
reference.

Second class of effect size measures

The effect size measures in the second class are formu-
lated as a mean difference divided by the standard deviation
under H0:

D ¼ EðTML H1Þ � EðTMLj jH0Þ
SDðTMLjH0Þ (15)

Unlike the first class, these measures have no theoretical
equivalency to F0 but are a more faithful translation of
Cohen’s d. We denote this class of effect size measures as
D to differentiate these effect size measures from the pre-
vious class and to emphasize their close relationship to
Cohen’s d. We vary the measures by explicitly assuming
an underlying central χ2 null distribution in different parts
of equation 15. That is, some versions assume that
EðTMLjH0Þ ¼ df in the numerator while others assume

that SDðTMLjH0Þ ¼
ffiffiffiffiffiffiffiffi
2df

p
. We also test the use of TRML

instead of TML. These effect size measures are presented in
Table 2. The columns of the table change the explicit
assumptions made in the denominator of the formula
while the rows change the explicit assumptions in the
numerator.

Version 1 of the measures uses
ffiffiffiffiffiffiffiffi
2df

p
as its standard

deviation, deviating from equation 15 by making the expli-
cit assumption that TMLjH0 follows a central χ2 distribution.
The second version of the effect sizes does not rely on such
an assumption. The third version of the effect sizes assumes
that TML follows a central χ2 distribution so that its variance
is 2df but replaces EðTMLjH0Þ with trðHΓÞ since it should

TABLE 1
First Class of Effect Size Measures

Effect size Formula Assumptions

E1 2�½EðTML H1Þ�EðTMLj jH0Þ�
½ðN�1Þ�ðVARðTMLjH1Þ�2df Þ�1=2

VarðTMLjH1Þ ¼ 2df þ 4λn

E2 E maxðTML�df ;0Þ
N�1

� �1=2
� 	

EðTMLjH0Þ ¼ df

E3 EðTML H1Þ�EðTMLj jH0Þ
N�1

� �1=2 –

E4 E TML�trðHΓÞ
N�1

� �1=2
� 	

EðTMLjH0Þ ¼ trðHΓÞ

E5 E TRML�df
N�1

� �1=2
� 	

EðTRMLjH0Þ ¼ df

E6 EðTRML H1Þ�EðTRMLj jH0Þ
N�1

� �1=2 –

Note. E3 and E6 do not make use of any assumptions in their formulas.

TABLE 2
Second Class of Effect Size Measures

Effect size Version 1 Version 2 Version 3

D1 E TML jH1�dfffiffiffiffiffi
2df

p
� 	

E TMLjH1�df
SDðTMLjH0Þ
h i

E TMLjH1�dfffiffiffiffiffiffiffiffiffiffiffiffiffi
2trðHΓÞÞ

p
� 	

D2 E TML H1�TMLj jH0ffiffiffiffiffi
2df

p
� 	

E TML H1�TMLj jH0

SDðTML jH0Þ
h i

E TML H1�TMLj jH0ffiffiffiffiffiffiffiffiffiffiffiffi
2trðHΓÞ

p
� 	

D3 E TML jH1�trðHΓÞffiffiffiffiffi
2df

p
� 	

E TML jH1�trðHΓÞ
SDðTML jH0Þ

h i
E TML jH1�trðHΓÞffiffiffiffiffiffiffiffiffiffiffiffi

2trðHΓÞ
p

� 	
D4 – E TRMLjH1�df

SDðTRMLjH0Þ
h i

E TRML jH1�dfffiffiffiffiffi
2df

p
� 	

D5 – E TRML H1�TRMLj jH0

SDðTRML jH0Þ
h i

E TRML H1�TRMLj jH0ffiffiffiffiffi
2df

p
� 	

Note. Each measure makes different explicit assumptions about
EðTMLjH0Þ. D1 assumes it equals df , D2 makes no assumption, and D3

assumes it equals trðHΓÞ. D4 and D5 use TRML in place of TML. Versions
1–3 of each measure vary the assumptions made about the standard

deviation. Version 1 assumes SDðTMLjH0Þ ¼
ffiffiffiffiffiffiffi
2df

p
, while version 2

makes no assumption. Version 3 assumes SDðTMLjH0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2trðHΓÞp

.
Note that since TRML is rescaled to take into account that VARðTMLjH0Þ
does not equal 2df , it does not make sense to create a version 1 for D4 and
D5. D4 assumes EðTRMLjH0Þ ¼ df while D5 makes no assumption.
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be equivalent with large N . Under normality, this should be
equal to the degrees of freedom.

Substitutions of the test statistic

Let us note that while we have only considered the test
statistics TML and TRML in this article, there are other test
statistics (e.g., the asymptotically distribution-free statistic
TADF) that are also theoretically justified for both classes of
effect size measures. Of course, the performance of these
substitutions should be investigated in a simulation study
and their suitability verified before being applied to real
data.

Point estimates and confidence intervals

So far, we have introduced definitions of the effect size
measures as population parameters. We can only obtain sam-
ple estimates from real data, so here we will briefly mention
how to get point estimates and confidence intervals. Interested
readers can find more details in the Appendix.

Obtaining Estimates. Effect size measures that do
not contain statistics under H0 can be estimated directly
from the data. However, many of the measures we have
defined contain a difference of expectations. Using the
procedure described in Section 3 of Yuan and Marshall
(2004), estimates of EðTML H1Þ � EðTMLj jH0Þ can be
obtained. This procedure can be modified to get estimates
of EðTRMLjH1Þ, EðTRMLjH0Þ, VARðTMLjH1Þ, and
SDðTMLjH0Þ which can be used to obtain point estimates
of the effect size measures. We recommend using the point
estimates together with bootstrap confidence intervals. For
example, these can include percentile intervals, bias-
corrected (BC) intervals, and bias-corrected and accelerated
(BCa) intervals (Efron & Tibshirani, 1994). Algorithm II in
Yuan and Marshall (2004) can be followed to get confi-
dence intervals for the effect size measures we have
defined. We will illustrate the performance of these con-
fidence intervals in two applied examples later on in this
article.

Statistical Properties of Estimators. Statistical
properties of estimators are often of interest—particularly
consistency and unbiasedness. The effect size measures we
defined have estimators that enjoy one or both properties.

First, we discuss consistency. All of the effect size
measures have either consistent or consistent at large1 esti-
mators. This is because FMLðS;Σðθ̂ÞÞ is consistent for
FMLðΣ0;Σðθ�ÞÞ and the effect size measures are functions

of the test statistic TML ¼ ðN � 1ÞFMLðS;Σðθ̂ÞÞ (Kano,

1986; Shapiro, 1984). As long as this ðN � 1Þ term can
be cancelled out, the estimators inherit statistical consis-

tency from FMLðS;Σðθ̂ÞÞ. The bootstrap estimators of
EðTMLjH0Þ and VARðTMLjH1Þ are also consistent in this
case (Beran & Srivastava, 1985). If the ðN � 1Þ term can-
not be cancelled out, then the effect size estimators are

consistent at large. Thus, Ê1, Ê3, and Ê6 are consistent in
the first class of effect size measures. The estimators of all
other effect size measures we defined are consistent at
large.

Some effect size measures also have unbiased estima-
tors. These measures are defined with expectations on the
outside of their formulas, so unbiasedness of their estima-
tors comes naturally. In the first class, Ê2, Ê4, and Ê5 are

unbiased. Version 1 of D̂1, D̂2, and D̂3 and version 3 of D̂4

and D̂5 are unbiased in the second class of effect size
measures.

METHOD

In this section, we describe the procedure for a Monte
Carlo simulation study to evaluate the performance of the
proposed effect size measures. We begin with an over-
view of conditions for the simulation study. Then, we
detail the data-generating process, the confirmatory factor
models used in the study, and estimation methods.
Finally, we discuss how the effect size measures are
estimated.

Overview

To evaluate our effect size measures, we conducted
a Monte Carlo simulation study using a confirmatory
3-factor model and 1,000 replications in all conditions.
We tested the sensitivity of our measures to the size of
model misspecification which we quantified by various
values of omitted cross-factor loadings denoted as a. We
also varied the sample size, model size, and the popula-
tion distribution underlying the sample to determine

TABLE 3
Simulation Conditions

Size of model
misspecification (a)

0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

Sample size (N) 75, 100, 120, 150, 200, 300, 500, 800, 1,000
Number of manifest
variables (p)

9, 15, 30

Distribution of
manifest variables

Normal, t, exponential, elliptical, non-normal,
normal with outliers (mix 1, mix 2, mix 3),
uniform

Estimation method ML, M-estimation

Note. Size of model misspecification is quantified by the size of
omitted cross-factor loadings a.

1Consistency at large holds when the effect size measure and its
estimator approach the same value, although both their limit values
might be infinity.
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which effect size measures are least affected by these
factors. We used both ML and M-estimation methods for
each of these conditions. The specific simulation condi-
tions we tested are presented in Table 3 (5,346 conditions
in total) and described in more depth in the next few
pages.

Data-generating distributions

We generated normal data from a multivariate normal dis-
tribution with p� p covariance matrix Σ0 equal to specifi-
cations we describe in the next section. Data following a t-
distribution were generated from a multivariate t-
distribution with 5 degrees of freedom and p� p covar-
iance matrix Σ0, which has substantially heavier tails than
the normal distribution. We generated exponential and uni-
form data with the following transformation:

x ¼ Σ1=2
0 z (16)

where z has length p and each element follows
a standardized exponential distribution to generate expo-
nential data and a standardized uniform distribution to
generate uniform data.

We generated elliptical data by using the following
transformation:

x ¼ rz (17)

where z follows a multivariate normal distribution with
mean vector 0 of length p and covariance matrix Σ0.

Also, r ¼ ðχ25=3Þ�1=2 where χ25 denotes a central χ2 distrib-
uted variable with 5 degrees of freedom, and z and r are
independent. The purpose of this transformation is to pre-
serve the mean and covariance while changing the multi-
variate relative kurtosis to 3.

We generated non-elliptical non-normal data by modify-
ing equation (3.1) in Yuan and Bentler (1999) given below:

x ¼ rΣ1=2z (18)

where the elements of z are independent and each follows
a standardized non-normal distribution, and r is an

independent nonnegative random variable. In particular,
the p elements of z are independent and each follows
a standardized exponential distribution and the same r is
used as for the elliptical data.

The mixed distributions consisted of a contaminated
normal distribution whose major component has mean vec-
tor 0 of length p and covariance matrix Σ0. Mix 1 contained
5% normally distributed outliers with mean vector 10 of
length p with covariance matrix Σ0, mix 2 contained 5%
outliers with mean vector 0 of length p with covariance
matrix 3. Σ0 and mix 3 contained 5% outliers with mean
vector 10 of length p and covariance matrix 3, Σ0.

Confirmatory factor model

All the population conditions in the simulation study were
specified via a confirmatory three-factor model. An equa-
tion denoting this model is given by

ΣðθÞ ¼ ΛΦΛ0 þ Ψ (19)

where ΣðθÞ is the working model covariance structure, Λ is
a p� 3 matrix of factor loadings, Φ is a 3� 3 matrix of
factor correlations, and Ψ is a p� p diagonal matrix of
measurement error variances of the manifest variables. As
described in Table 3, we considered three conditions on the
number of manifest variables (p = 9, 15, and 30). We set the
error variances in Ψ to 1 and specified the factor correla-
tions as

Φ ¼
1
:5 1
:3 :4 1

2
4

3
5 (20)

Three cross-factor loadings were in the population, but they
were ignored in misspecified models. These paths are
denoted a in Figure 1 and their values were set equal in
the population. Larger values of a corresponded to more
severe model misspecification.

The general factor loadings matrix can be expressed as

FIGURE 1 Path diagram for p ¼ 15. Note. Dashed lines indicate paths for cross-loadings a that were omitted in misspecified models. Double-headed
arrows above observed variables X1–X15 denote error variances set to 1. Double-headed arrows between factors F1 and F3 denote factor correlations. The
factor loading values are noted on the left of single-headed arrows.
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Λ ¼
c a 0
0 c a
a 0 c

2
4

3
5 (21)

where 0 denotes a vector of p=3 zeros and a is a vector of
length p=3 whose last element equals a and the other p=3� 1
elements are zero. For example, a population with nine man-
ifest variables has a ¼ ð0; 0; aÞ0. The vector c has length p=3
with values that are adjusted according to the number of
manifest variables. For a population with nine manifest vari-
ables, c ¼ ð1; :8; :7Þ0. For a population with 15 manifest vari-
ables, c ¼ ð1; :8; :7; :6; :4Þ0. For a populationwith 30manifest
variables,
c ¼ ð1:00; :80; :70; :60; :40; :30; :35; :47; :58; :85Þ0.

Estimation method

We employed Normal maximum-likelihood estimation as
well as M-estimation using Huber-type weights, downweight-
ing the 5% most extreme observations. M-estimation is
a robust estimation method that weights observations accord-
ing to how far they are from the center of the distribution of
the sample. Observations that are far from the center get
smaller weights than observations in the middle when estimat-
ing population means and covariances. Details
of M-estimation in general can be found in Maronna,
Martin, and Yohai (2006) and for SEM in particular in Yuan
and Bentler (1998) and Yuan, Bentler, and Chan (2004).

Estimation of effect size measures

The purpose of the simulation study was to evaluate the
definitions of the new effect size measures we proposed. To
this end, we calculated the effect size measures in the
following way. We generated data under H0 according to
the distribution specified in the simulation condition and
setting a to 0 in the covariance matrix. For data under H1,
we modified the procedure so that the value of a varied
from 0 to 1. Then, we used Fisher scoring to compute
both ML and robust M-estimates and evaluated the result-
ing test statistics TML and TRML under H0 and H1. To
estimate EðTMLjH0Þ, EðTMLjH1Þ, EðTRMLjH0Þ, and
EðTRMLjH1Þ, we averaged the respective test statistics
across the converged replications.

RESULTS

Out of the 1,000 replications for each simulation condition,
there were some nonconverged cases.2 The worst case had

only 804 converged replications. This corresponded to the
simulation condition for estimating EðT jH1Þ under non-
normally distributed data with p ¼ 15 and N ¼ 75. All
other conditions had at least 872 converged replications.
For this article, we recorded the number of convergences
and ignored the non-converging replications.

We evaluated the effect size measures according to their
sensitivity to model misspecification and insensitivity to
sample size, number of variables, and data distribution.
First, we compared the relative performance of each effect
size measure according to these features to determine
which effect size measures are most promising. Then, we
evaluated their performance in more depth, eliminating the
other less promising candidates from further consideration.

Hierarchical regression approach

We used a hierarchical regression modeling approach to
evaluate the performance of all the effect size measures.
This method was used to determine how sample size,
number of variables, data distribution, and estimation
method influence the values of the effect size measures
controlling for size of model misspecification.
Specifically, our purpose was to determine how much var-
iance in the effect size measure was accounted for by the
predictor variables (i.e., N , p, etc.) by examining R2

adj. The
full model we considered for a single effect size measure
can be written as

yfull ¼ β0 þ β1ðmisspecificationÞ þ β2ðNÞ þ β3ðpÞ
þ β4ðdistributionÞ þ β5ðestimationmethodÞ þ �

and the reduced model can be written as

yreduced ¼ β0 þ β1ðmisspecificationÞ þ �

where N refers to the sample size and p is the number of
variables. Population distribution and estimation method
were treated as categorical variables in this analysis,
while p, N , and model misspecification were treated as
continuous. For the sake of simplicity, we write a single
regression coefficient β4 here for population distribution,
but operationally, there are eight regression coefficients for
this variable because the use of dummy coding is required
for categorical predictors.

For each effect size measure, we calculated the full and
reduced models and their R2

adj:. We used R2
adj: instead of R2

because R2
adj: contains a penalty to offset the effect of

2 Cases were considered as nonconverged when the maximum iteration
limit of 1000 was exceeded in the Fisher scoring algorithm to estimate the
model parameters. This occurred when the difference between the model

parameter estimates in the previous step and the current step exceeded 1�
10�10 for all 1000 iterations.
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including more variables in the model which artificially
inflates the value of R2 (Rencher & Schaalje, 2008).

As can be seen in Table 4, E3 performed the best out
of all 19 effect size measures we considered. The full
model that included sample size, number of variables,
data distribution, and misspecification size accounted
for 96.8% of the variance in the values of E3 while
the reduced model that only considered misspecification
size accounted for 92.5% of the variance. This is
encouraging for two reasons. First, the sample size,
number of variables, and data distribution did little to
improve the prediction of the values of E3, indicating
that this effect size measure may be most affected by
the size of model misspecification and little affected by
these other factors. These characteristics are needed in
a good effect size measure. Second, since the full model
accounted for 96.8% of the variance in values of E3,
there was little influence on E3 from unidentified factors
present in this study.

The other two bolded effect size measures in Table 4
(E1 and E6) also performed reasonably well. Between
the two measures, E6 had a full model that explained
more of its variance than E1, which was the main
difference in their performance. The full model only
explained 84.2% of the variance of E1; this suggests
other factors not explicitly considered in our model
substantially affected its value.

Comparison to F0

Since the first class of effect size measures has some
equivalency to F0, we conducted a preliminary evaluation
of these measures by their distance from F0. Distance was
calculated as the absolute difference between the value of
an effect size measure and the value of F0 for a specific
level of model misspecification for each simulation condi-
tion. These absolute differences were then averaged across
size of model misspecification and collapsed across sample
size. All measures were ranked according to their distance
from F0 and their rankings recorded for each simulation
condition. The measures that were most consistently ranked
in the top 3 (E1, E3, and E6) are summarized in Table 5.

From Table 5, it is clear that E3 was consistently closer
to F0 than the other effect size measures in almost every
simulation condition. E6 was only marginally better in
conditions with uniform data and 15 or 30 manifest vari-
ables. Note that this may not be a fair comparison because
F0 assumes normality and its value may not be an

TABLE 4
Hierarchical Regression Results

ES measure R2
adj:ðfullÞ R2

adj:ðreducedÞ ΔR2
adj:

E1 0.8424 0.6788 0.1636
E2 0.7678 0.2963 0.4715
E3 0.9680 0.9254 0.0426
E4 0.6629 0.3214 0.3414
E5 0.6975 0.2640 0.4335
E6 0.9138 0.7737 0.1401
D1ðv1Þ 0.6688 0.2665 0.4022
D1ðv2Þ 0.5719 0.2406 0.3313
D1ðv3Þ 0.6258 0.2568 0.3690
D2ðv1Þ 0.6721 0.2850 0.3871
D2ðv2Þ 0.5846 0.2312 0.3534
D2ðv3Þ 0.6432 0.2698 0.3734
D3ðv1Þ 0.5148 0.0826 0.4322
D3ðv2Þ 0.5276 0.0754 0.4522
D3ðv3Þ 0.6220 0.1756 0.4464
D4ðv2Þ 0.6165 0.1908 0.4257
D4ðv3Þ 0.61649 0.19080 0.42569
D5ðv2Þ 0.6062 0.2296 0.3766
D5ðv3Þ 0.5965 0.2335 0.3629

Note. R2
adj: for the full and reduced models of each effect size measure.

Subscripts v1, v2, and v3 denote version 1, version 2, and version 3 of
effect size measures from the second class.

Bold rows correspond to the three effect size measures with the lowest
ΔR2

adj:

TABLE 5
Distance to F0 for Three Effect Size Measures Closest to F0

Average distance from F0

E1 E3 E6

p Distribution ML M-est ML M-est ML M-est

Normal 0.0349 0.0403 0.0060 0.0062 0.0080 0.0079
t 0.2547 0.0958 0.0097 0.0076 0.1199 0.2018
Exponential 0.0354 0.0356 0.0040 0.0047 0.0094 0.1006
Elliptical 0.2605 0.1041 0.0100 0.0061 0.1192 0.2007

9 Non-normal 0.2436 0.0673 0.0082 0.0056 0.1089 0.2389
Mix 1 0.0633 0.0643 0.0396 0.0334 0.0423 0.0618
Mix 2 0.0821 0.0516 0.0060 0.0055 0.0328 0.0541
Mix 3 0.1014 0.0575 0.0394 0.0298 0.0626 0.1268
Uniform 0.0330 0.0364 0.0061 0.0062 0.0065 0.0073
Normal 0.0420 0.0494 0.0064 0.0064 0.0080 0.0071
t 0.3683 0.1239 0.0124 0.0070 0.1538 0.2700
Exponential 0.0591 0.0267 0.0038 0.0038 0.0090 0.0963
Elliptical 0.3696 0.1231 0.0119 0.0071 0.1539 0.2701

15 Non-normal 0.3516 0.0988 0.0077 0.0042 0.1392 0.3028
Mix 1 0.1041 0.1040 0.0466 0.0451 0.0482 0.0549
Mix 2 0.1052 0.0570 0.0074 0.0064 0.0408 0.0702
Mix 3 0.1574 0.0896 0.0463 0.0415 0.0674 0.1165
Uniform 0.0423 0.0444 0.0084 0.0079 0.0087 0.0068
Normal 0.1173 0.1198 0.0028 0.0029 0.0034 0.0023
t 0.4689 0.2021 0.0070 0.0036 0.1576 0.2852
Exponential 0.1255 0.0856 0.0024 0.0026 0.0048 0.0580
Elliptical 0.4690 0.2023 0.0094 0.0041 0.1576 0.2852

30 Non-normal 0.4641 0.2189 0.0056 0.0097 0.1480 0.3108
Mix 1 0.3019 0.3027 0.0753 0.0764 0.0772 0.0812
Mix 2 0.1871 0.1234 0.0032 0.0028 0.0372 0.0704
Mix 3 0.3363 0.3006 0.0745 0.0882 0.1087 0.2150
Uniform 0.1098 0.1099 0.0044 0.0045 0.0040 0.0043

Note. Absolute distances are averaged across model misspecification
size and then sample size. E1, E3, and E6 are the three measures that are
closest to F0 in the most simulation conditions.
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appropriate target for some statistics under non-normal
conditions. Nevertheless, this comparison is informative
as a preliminary tool to investigate the behavior of the
effect size measures.

Most promising effect size measure

The pattern that emerges from Tables 4 and 5 is that E3

performed the best while E1 and E6 were not as satisfactory.
In addition to having a larger ΔR2

adj, they were not ranked in

the top 3 effect size measures consistently across the simu-
lation conditions. The other effect size measures considered
in this study performed even worse. For the rest of our
analysis, we considered only E3 and examined its proper-
ties. For the sake of convenience and clarity, we will refer

to E3 for the remainder of this article as simply E (pro-
nounced as “E”).

Stability of E
While a measure of model misspecification in the form of
½EðT H1Þ � EðTj jH0Þ� has been proposed in Yuan and
Marshall (2004), E is new. Problematically, there is no
established ideal to compare E against. Thus, we evaluated
its stability by comparing its performance under various
simulation conditions to its performance in a reference
condition. We considered the reference to be the simulation
condition with normally distributed data, p ¼ 9, N ¼ 1000,
and using ML estimation. This condition was chosen
because there was an adequate sample size, the number of
manifest variables was small enough to avoid estimation

TABLE 6
Distance of Ei from Er

Sample size N

75 150 300 500 800

p Dist ML M-est ML M-est ML M-est ML M-est ML M-est

Norm 0.0128 0.0138 0.0069 0.0076 0.0022 0.0025 0.0004 0.0005 0.0020 0.0024
t 0.0242 0.0185 0.0134 0.0085 0.0113 0.0029 0.0028 0.0006 0.0025 0.0028
Exp 0.0123 0.0106 0.0036 0.0049 0.0011 0.0014 0.0007 0.0002 0.0004 0.0005
Ellip 0.0307 0.0079 0.0081 0.0082 0.0054 0.0029 0.0024 0.0006 0.0023 0.0028

9 Non 0.0167 0.0117 0.0115 0.0082 0.0058 0.0031 0.0027 0.0016 0.0008 0.0012
Mix 1 0.0395 0.0347 0.0402 0.0351 0.0374 0.0308 0.0375 0.0301 0.0404 0.0335
Mix2 0.0126 0.0098 0.0069 0.0067 0.0023 0.0020 0.0007 0.0006 0.0028 0.0028
Mix 3 0.0395 0.0316 0.0400 0.0314 0.0373 0.0270 0.0377 0.0261 0.0406 0.0293
Unif 0.0119 0.0123 0.0074 0.0073 0.0021 0.0022 0.0038 0.0039 0.0008 0.0008
Norm 0.1030 0.1032 0.1178 0.1180 0.1202 0.1203 0.1173 0.1172 0.1196 0.1196
t 0.1159 0.1040 0.1135 0.1174 0.1176 0.1205 0.1152 0.1162 0.1226 0.1198
Exp 0.1189 0.1183 0.1215 0.1197 0.1220 0.1206 0.1214 0.1200 0.1202 0.1183
Ellip 0.1108 0.1035 0.1076 0.1174 0.1176 0.1205 0.1154 0.1162 0.1181 0.1198

15 Non 0.1209 0.1208 0.1221 0.1175 0.1142 0.1204 0.1188 0.1218 0.1174 0.1202
Mix 1 0.0950 0.0974 0.0979 0.1008 0.0984 0.1024 0.0929 0.0966 0.0963 0.0999
Mix 2 0.1028 0.1040 0.1158 0.1175 0.1176 0.1190 0.1157 0.1165 0.1200 0.1199
Mix 3 0.0938 0.1025 0.0975 0.1064 0.0975 0.1082 0.0926 0.1027 0.0968 0.1060
Unif 0.1081 0.1027 0.1097 0.1096 0.1129 0.1130 0.1182 0.1182 0.1198 0.1198
Norm 0.1282 0.1284 0.1312 0.1313 0.1282 0.1282 0.1281 0.1281 0.1300 0.1299
t 0.1313 0.1259 0.1297 0.1310 0.1364 0.1272 0.1253 0.1277 0.1276 0.1297
Exp 0.1322 0.1322 0.1344 0.1350 0.1285 0.1303 0.1332 0.1347 0.1324 0.1339
Ellip 0.1398 0.1204 0.1282 0.1310 0.1265 0.1272 0.1254 0.1277 0.1277 0.1297

30 Non 0.1320 0.1170 0.1332 0.1313 0.1301 0.1263 0.1348 0.1319 0.1312 0.1309
Mix 1 0.0902 0.0926 0.0945 0.0938 0.0913 0.0902 0.0913 0.0900 0.0927 0.0914
Mix 2 0.1273 0.1292 0.1302 0.1309 0.1273 0.1277 0.1282 0.1284 0.1301 0.1299
Mix 3 0.0911 0.0865 0.0946 0.0855 0.0910 0.0822 0.0909 0.0820 0.0926 0.0826
Unif 0.1216 0.1210 0.1239 0.1239 0.1303 0.1303 0.1297 0.1297 0.1294 0.1294

Note. Distance of Ei from Er for a given level of model misspecification was calculated as the absolute difference Ei � Erj j. These absolute differences
were averaged across misspecification size for each simulation condition to yield the distance values. Dist column contains the abbreviated names of
distributions used in the simulation conditions, where “Norm” denotes the normal distribution condition, “Exp” denotes the exponential distribution
condition, “Ellip” denotes the elliptical distribution condition, “Non” denotes the non-normal distribution condition, and “Unif” denotes the uniform
distribution condition.
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problems, and ML estimation was appropriately paired with
normally distributed data. We will denote the values of E
under the reference condition as Er, and the values of E in
other simulation conditions as Ei, where i refers to
a particular simulation condition.

Table 6 contains the distances of Ei from Er. Within each
model size, there was only minor variation in the distance of Ei

from Er. However, there was considerably more variation in E
as the model size varied. The distances of Ei from Er for
a 9-variable model were fairly small from around 0.0008 to
0.0395. However, the distances of Ei from Er for a 15- or 30-
variable model fell roughly between 0.08 and 0.14.

Table 7 condenses the results shown in Table 6 by
collapsing across sample size. Table 7 shows that there
was more variation between model sizes than there was
across distributions and estimation methods. When the
model size increased from p ¼ 9 to p ¼ 15, the distances
of Ei from Er suddenly jumped from about 0.03 to about
0.11. However, when the model size increased from p ¼
15 to p ¼ 30, the distances didn’t increase as much.

Together, Tables 6 and 7 indicate that E was little
affected by sample size and data distribution but was
moderately affected by the number of variables. The
difference between the value of Ei from that of Er is
as much as 0.1493 for the conditions studied when
considering bigger model sizes. This is relatively large
considering that the scale of E generally ran from 0 to 1
(maximum value obtained in this study was 1.01).

Figure 2 consists of several plots on the values of E
across several simulation conditions for a sample size of
300. The values of Ei were compared to the values of
Er, where the values of Er are denoted by a solid line.
The Ei values using ML and M-estimation were almost
identical for the conditions studied. The Ei values across
population distributions were also very similar. For
models with 15 or 30 manifest variables, the Ei values
were higher than the Er values. This gap between the

values of Ei and Er became larger as the size of model
misspecification increased.

Figure 3 shows the change in E as N varies for the
simulation condition in which the values of E were furthest
from the values of Er. In this scenario, increasing the
sample size did little to improve the value. A sample size
of 100 yielded comparable values to those from a sample
size of 1000.

The values of the difference Ei � Er along with their
relative frequencies are shown in Figure 4. For most
simulation conditions, Ei was only slightly smaller than
Er. In conditions where Ei values were far from Er, it
was most common for Ei to be larger than Er. In these
cases, E values may overrepresent rather than under-
represent the size of model misspecification.

FOLLOW-UP INVESTIGATION OF THE BEST
EFFECT SIZE MEASURE

In this section, we extend our investigation of E. First, we
untangle the effect of model size on E. Then, we provide
rough guidelines for cutoff values. Finally, we demonstrate
the performance of E and its confidence intervals on two
real datasets.

The effect of model size

We have stated that E appears to be influenced by model
size based on the results of our simulation study. However,
considering three model sizes is not adequate to infer the
exact nature of the relationship. To remedy this, we con-
sidered the effect of a wider range of model sizes (p = 9,
15, 30, 45, 60, and 90) on the definition analytically. For
this purpose, an analytical approach may be sufficient to
determine the effect of p holding other factors constant.

Building from Equation 11, we have

E ¼ ðN � 1ÞFMLðΣ0;ΣðθÞÞ � ðN � 1ÞFMLðΣH0 ;ΣðθÞÞ
N � 1

� �1=2

(22)

Figure 5 shows the results graphically. Holding a con-
stant, we expected horizontal lines indicating that the
values of E remained unchanged when varying p. For
a 	 :5, there was only minor fluctuation. For larger a and
models with less than 45 variables, the fluctuation of E
values was more pronounced. Once p 
 45, the values of
E were stable at somewhat higher magnitudes.

Based on these results, E seems to be moderately
impacted by model size when there is substantial model
misspecification. Under these conditions and when p 
 45,
the values of E were larger. The practical impact of this
may be minimal with a suitable choice of cutoff values. We

TABLE 7
Distance of Ei from Er When Collapsing Across N

Model size

p ¼ 9 p ¼ 15 p ¼ 30

Distribution ML M-est ML M-est ML M-est

Normal 0.0053 0.0057 0.1145 0.1145 0.1288 0.1288
t 0.0093 0.0071 0.1136 0.1139 0.1285 0.1280
Exponential 0.0035 0.0038 0.1191 0.1178 0.1322 0.1331
Elliptical 0.0097 0.0057 0.1110 0.1139 0.1276 0.1274
Non-normal 0.0079 0.0051 0.1168 0.1190 0.1328 0.1315
Mix 1 0.0390 0.0328 0.0953 0.0988 0.0922 0.0914
Mix 2 0.0055 0.0051 0.1131 0.1142 0.1284 0.1288
Mix 3 0.0389 0.0292 0.0946 0.1044 0.0924 0.0835
Uniform 0.0055 0.0056 0.1136 0.1129 0.1266 0.1266
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discuss such a choice of cutoff values in the following
section.

Cutoff Values

This study has focused primarily on the definitions of new
effect size measures and their performance in conditions
where the population values were known. However, we recog-
nize that there is a practical need for cutoff values of effect size
measures. This is more of a substantive issue than a statistical
one, but we will present preliminary recommendations based
on our findings and current conventions.

Since we have measured the severity of model mis-
specification by the size of omitted cross-loadings,
a natural approach to establishing cutoff values of E is
to translate cutoffs used to assess practical significance of
factor loadings in exploratory factor analysis (EFA).
Stevens (1992) suggested using a cutoff of 0.4 for inter-
pretation purposes while Comrey and Lee (1992) sug-
gested cutoffs ranging from 0.32 (poor), 0.45 (fair), 0.55
(good), 0.63 (very good), to 0.71 (excellent). That is,
standardized loadings that are less than the chosen cutoff
contribute very little to the factor and should be dropped.
Analogously in CFA, an omitted factor loading with the
same magnitude should correspond to minor model

Model Size

Distribution p = 9 p = 15 p = 30

Normal

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Misspecification Size

E
ffe

ct
 S

iz
e

0.0 0.2

Cutoff Values

0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Non-normal

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Mix 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FIGURE 2 Performance of Ei compared to Er. Note. N ¼ 300, the line with circles denotes the values of Ei under ML estimation while the line with
crosses denotes M-estimation. The solid line corresponds to the values of Er.
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misspecification. We will incorporate both suggestions in
our choice of cutoff thresholds.

The average values of E obtained in the simulation
study for each misspecification size (unstandardized a
and standardized as) are presented in Table 8. Cutoff
thresholds are displayed in Table 9 and were chosen
according to the suggestions discussed in the previous
paragraph and the misspecification sizes considered in
the study. E<:42 can be regarded as very small since
this corresponds to a standardized omitted factor loading

of approximately 0.3 or less. Small effect sizes have
values between 0.42 and 0.6, based on the criteria sug-
gested by Stevens (1992) for interpretable factor load-
ings. Medium effect sizes have values between 0.6 and
0.82, where 0.82 corresponds to an omitted factor load-
ing of approximately 0.55 [“good” according to Comrey
and Lee (1992)]. A large effect size exceeds 0.82 in
value.

These four cutoff categories have two advantages: (1)
A “very small” effect size category provides a bonus
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reward for excellent models, since models with minimal
misspecification are of great interest. (2) Most of the
fluctuations in E values due to model size occur in the
“medium” and “large” effect size categories, where the
stakes are lower.

Let us caution that these cutoff guidelines are pre-
liminary and should be treated as rules of thumb. There
is necessarily some level of arbitrariness in any
approach to cutoff values. However, a comprehensive
investigation is warranted to refine the thresholds so
they reflect the distribution of effect sizes in empirical
studies using SEM. Field-specific norms should also be
developed, since measurement error can be unavoidably
larger for some research areas. In addition, more types
of model structures should be considered. The thresh-
olds in Table 9 are intended to serve in the interim.

Applied examples

We will demonstrate the practical performance of E on two
real datasets in this section. The first example is a dataset
with distributional assumption violations and shows the
performance of E under moderate model misspecification.
The second example demonstrates the performance of E
under very little model misspecification. In both examples,
we provide confidence intervals to illustrate the actual
performance of the bootstrap confidence intervals discussed
previously. We will implement percentile intervals, BC
intervals, and BCa intervals with 90% and 95% confidence
levels.

Example 1: KIMS: Baer, Smith, and Allen (2004)
developed the Kentucky Inventory of Mindfulness Skills
(KIMS) containing four subscales: observing, describing,
acting with awareness, and accepting without judgment.
The inventory consists of 39 items rated on a 5-point
Likert scale. Publicly available data from openpsycho-
metrics.org was obtained from 601 participants who agreed
to share their responses for research purposes. Histograms
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TABLE 8
E Values by Misspecification Size

a as Mean SD

0.0 0.0 0.0024 0.0111

0.1 0.0820 0.1121 0.0386

0.2 0.1597 0.2216 0.0378

0.3 0.2323 0.3265 0.0426

0.4 0.2991 0.4248 0.0529

0.5 0.3600 0.5164 0.0647

0.6 0.4150 0.6017 0.0770

0.7 0.4644 0.6807 0.0889

0.8 0.5087 0.7536 0.0997

0.9 0.5482 0.8205 0.1093

1.0 0.5835 0.8815 0.1182

Note. as denotes the standardized loadings that correspond to a. The
mean and standard deviation columns refer to E values.

TABLE 9
E Cutoff Values

Very small Small Medium Large

<:42 0.42–0.6 0.6–0.82 >:82
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of the item responses suggested moderately skewed distri-
butions for many items.

While a scree plot indicated a preference for three factors,
EFA showed that three factors had cumulative variance of 0.366
(sum of the first three eigenvalues of the sample correlation
matrix divided by 39), while four factors had 0.437. We con-
ducted an EFA using the psych package in R, extracting four
factors using promax rotation. Our results mostly agreed with
the original study with the exception of item 11. In our analysis,
item 11 was sorted into the observing subscale while it was
originally part of the acting with awareness subscale. Like the
original study, our analysis indicated several potential cross-
loadings (Baer et al., 2004).

We fit two models for our demonstration. Model 1 was
a four-factor model based on the original subscales with no
cross-loadings and Model 2 was a four-factor model based on
our EFA results (four factors, with item 11 on the observing
subscale and cross-loadings with magnitude greater than 0.23).
The test statistics and fit indices in Table 10 provided
a conflicted view of model fit. The Comparative Fit Index
(CFI), Tucker Lewis Index (TLI), and RMSEA slightly pre-
ferredModel 2 (although CFI and TLI indicate a poor model fit
in both cases) while the Standardized Root Mean Square
Residual (SRMR) preferred Model 1. As is typical with real
data, it is unclear which fit indices to trust and which model
should be preferred.

Ê values in Table 11 suggested substantial model mis-
specification for both models. Referencing Table 9 from the
previous section, the 90% and 95% confidence intervals for
both models fell entirely within the “large” effect size

category. The widths of the percentile intervals, BC inter-
vals, and BCa intervals were fairly narrow and did not
differ much from each other. Increasing the confidence
level from 90% to 95% did not widen the confidence

intervals substantially for either model. Overall, Ê indicated
that there was less misspecification in Model 2 which
matched our expectations based on the EFA results.
However, neither model was very good.

Example 2: Open–closed book data: This classic data-
set from Table 1.2.1 in Mardia, Kent, and Bibby (1979)
contains test scores from 88 students on 5 subjects:
mechanics, vectors, algebra, analysis, and statistics. The
first two subjects were closed-book exams while the last
three were open-book exams. We fit the tried-and-true two-
factor model with open book and closed book factors
originally proposed by Tanaka, Watadani, and Moon
(1991). The test statistic and fit indices in Table 12 did
not reject the model.

We obtained Ê ¼ :155 which indicated a “very small”
effect size according to Table 9. The 90% and 95% con-
fidence intervals in Table 13 also indicated a “very small”
effect size. The average width of the 90% confidence inter-
vals was 0.295 while the average width of the 95% con-
fidence intervals was 0.336. This is not a very large
difference. Overall, the model appears to perform extre-
mely well and had little misspecification.

A NOTE ON FIT INDICES

In the introduction, we noted that fit indices cannot be used as
effect size measures while they are used in hypothesis tests. In

TABLE 10
Example 1 Test Statistics and Fit Indices

Model TML df CFI TLI RMSEA RMSEA CI SRMR

Model 1 2,451.289 696 0.830 0.819 0.065 (0.062, 0.068) 0.074

Model 2 2,380.451 694 0.837 0.826 0.064 (0.061, 0.066) 0.085

Note. RMSEA CI denotes 90% confidence intervals for RMSEA.

TABLE 11
Example 1 Results

Model 1, Ê ¼ 2:021 Model 2, Ê ¼ 1:607

Type 90% 95% 90% 95%

Percentile interval (1.918, 2.138) (1.905, 2.160) (1.491, 1.740) (1.473, 1.767)

BC interval (1.925, 2.145) (1.909, 2.165) (1.493, 1.747) (1.477, 1.771)

BC α (α1, α2) (0.0625, 0.960) (0.032, 0.981) (0.058, 0.957) (0.030, 0.979)

BCa interval (1.929, 2.152) (1.914, 2.181) (1.498, 1.755) (1.483, 1.781)

BCa α (α1, α2) (0.072, 0.968) (0.040, 0.986) (0.068, 0.965) (0.038, 0.985)

Note. These confidence intervals were based on a nested bootstrap with B1 ¼ 800 and B0 ¼ 200.

TABLE 12
Example 2 Test Statistic and Fit Indices

TML df CFI TLI RMSEA RMSEA CI SRMR

2.097 4 1 1.025 0 (0, 0.118) 0.019

Note. RMSEA CI denotes 90% confidence intervals for RMSEA.
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TABLE 13
Example 2 Results

Level Percentile BC BC α (α1, α2) BCa BCa α (α1, α2)

90% (0.021, 0.313) (0.027, 0.322) (0.063, 0.960) (0.029, 0.328) (0.066, 0.963)

95% (0.009, 0.343) (0.016, 0.351) (0.032, 0.981) (0.017, 0.356) (0.035, 0.983)

Note. “Level” denotes the confidence level of the confidence intervals. The intervals were based on a nested bootstrap with B1 ¼ 800 and B0 ¼ 200.

TABLE 14
Performance of Popular Fit Indices for a ¼ :4

CFI TLI RMSEA SRMR

p N Dist ML M-est ML M-est ML M-est ML M-est

75 Norm 0.9334 0.9315 0.9001 0.8973 0.0678 0.0691 0.0761 0.0781

75 t 0.8609 0.9055 0.7914 0.8583 0.1142 0.0854 0.0929 0.1689

75 Ellip 0.8609 0.9055 0.7914 0.8583 0.1142 0.0854 0.0929 0.1689

75 Non 0.8708 0.9341 0.8062 0.9011 0.1090 0.0695 0.0904 0.2152

300 Norm 0.9314 0.9310 0.8971 0.8964 0.0761 0.0763 0.0556 0.0563

9 300 t 0.8972 0.9246 0.8458 0.8869 0.0957 0.0801 0.0644 0.1621

300 Ellip 0.8972 0.9246 0.8458 0.8869 0.0957 0.0801 0.0644 0.1621

300 Non 0.9056 0.9387 0.8584 0.9080 0.0920 0.0731 0.0632 0.2201

800 Norm 0.9344 0.9344 0.9016 0.9017 0.0745 0.0745 0.0499 0.0501

800 t 0.9168 0.9324 0.8752 0.8986 0.0847 0.0759 0.0543 0.1565

800 Ellip 0.9168 0.9324 0.8752 0.8986 0.0847 0.0759 0.0543 0.1565

800 Non 0.9196 0.9366 0.8794 0.9048 0.0838 0.0749 0.0541 0.2223

75 Norm 0.8984 0.8954 0.8774 0.8738 0.0569 0.0580 0.0925 0.0929

75 t 0.7256 0.8358 0.6688 0.8018 0.1144 0.0784 0.1174 0.1743

75 Ellip 0.7256 0.8358 0.6688 0.8018 0.1144 0.0784 0.1174 0.1743

75 Non 0.7796 0.8863 0.7341 0.8628 0.1005 0.0628 0.1089 0.1844

300 Norm 0.9226 0.9216 0.9065 0.9054 0.0515 0.0518 0.0644 0.0646

15 300 t 0.8430 0.9063 0.8105 0.8869 0.0785 0.0574 0.0769 0.1539

300 Ellip 0.8430 0.9063 0.8105 0.8869 0.0785 0.0574 0.0769 0.1539

300 Non 0.8530 0.9230 0.8226 0.9071 0.0761 0.0525 0.0759 0.1855

800 Norm 0.9264 0.9262 0.9112 0.9109 0.0502 0.0503 0.0558 0.0559

800 t 0.8829 0.9209 0.8587 0.9045 0.0654 0.0522 0.0640 0.1474

800 Ellip 0.8829 0.9209 0.8587 0.9045 0.0654 0.0522 0.0640 0.1474

800 Non 0.8911 0.9290 0.8686 0.9143 0.0629 0.0502 0.0616 0.1813

75 Norm 0.8152 0.8137 0.8000 0.7985 0.0558 0.0561 0.0952 0.0953

75 t 0.5685 0.7024 0.5331 0.6780 0.1080 0.0775 0.1248 0.1583

75 Ellip 0.5685 0.7024 0.5331 0.6780 0.1080 0.0775 0.1248 0.1583

75 Non 0.5874 0.7562 0.5535 0.7362 0.1053 0.0686 0.1222 0.1643

300 Norm 0.9536 0.9527 0.9497 0.9488 0.0254 0.0257 0.0528 0.0528

30 300 t 0.7847 0.9215 0.7670 0.9151 0.0622 0.0341 0.0727 0.1310

300 Ellip 0.7847 0.9215 0.7670 0.9151 0.0622 0.0341 0.0727 0.1310

300 Non 0.7931 0.9464 0.7761 0.9420 0.0613 0.0279 0.0719 0.1474

800 Norm 0.9606 0.9604 0.9574 0.9571 0.0236 0.0237 0.0386 0.0387

800 t 0.8624 0.9491 0.8511 0.9449 0.0470 0.0271 0.0526 0.1246

800 Ellip 0.8624 0.9491 0.8511 0.9449 0.0470 0.0271 0.0526 0.1246

800 Non 0.8749 0.9593 0.8646 0.9560 0.0445 0.0244 0.0500 0.1387

Note. Values of popular fit indices for a fixed level of model misspecification (a ¼ :4). Dist column contains the abbreviated names of distributions used
in the simulation conditions, where “Norm” denotes the normal distribution condition, “Ellip” denotes the elliptical distribution condition, and “Non”
denotes the non-normal distribution condition.
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addition to this point, we stated that their performance is
unstable and affected by factors unrelated to model fit. In
Table 14, we briefly demonstrate this by showing the perfor-
mance of CFI, TLI, RMSEA, and SRMR under some of the
conditions considered in our simulation study.

Although the model misspecification was held constant
at a ¼ :4, the values of every fit index ranged from poor to
good fit according to the cutoff guidelines established in Hu
and Bentler (1999). This was true even within model sizes.
Based on these results, we do not advocate using these fit
indices as effect size measures even if their use in hypoth-
esis testing is discontinued.

DISCUSSION

The results of the Monte Carlo simulation study indicate
that E (E3 in the first class of effect size measures) is
a useful effect size measure. Its performance on two real
datasets echoes the results of the simulation study. The
analyses we performed imply that (1) E is little influenced
by sample size, distribution, or estimation method; (2) the
range of values of E reflect the severity of model misspe-
cification; and (3) while E is somewhat influenced by
model size, the practical impact of this relationship may
be reduced by choosing suitable cutoff values.

Thus, generalizing Cohen’s d to SEM has yielded an effect
size measure that has several desirable properties. However,
this approach has also produced effect size measures that do not
have desirable properties. Overall, the first class of effect size
measures performed better than the second class. While
the second class of effect size measures was a stricter transla-
tion of Cohen’s d, the first class of effect size measures had
some equivalency to F0. These may be important distinguish-
ing traits and may inform future researchers in this area.

Another feature of this study was that it compared effect
size measures that did not make any distributional assump-
tions in their definitions to effect size measures that did.
Results of the simulation study showed that the effect size
measures that relied on distributional assumptions in their
definitions performed badly. Avoiding these assumptions
when developing new statistical measures may be beneficial.

Limitations

This study has only evaluated the performance of effect size
measures with complete data and the performance of E with
incomplete data is unknown. The simulation study was lim-
ited to three-factor models with the number of manifest vari-
ables uniformly increasing among the factors. The best effect
size measure E is also somewhat impacted by model size.

Future directions

Future directions include further investigation of E under
more types of model complexity and different numbers of
manifest variables. More rigorous cutoff thresholds should
also be developed based on an extensive literature review
of empirical studies that use SEM. The performance of E
with incomplete data should also be investigated.

CONCLUSION

While the purpose of E is not to replace test statistics or fit
indices, it does complement statistical analysis in applica-
tions. It provides additional information that cannot be
gained from existing measures in SEM. Supplemental
information to hypothesis tests that capture the size of the
misspecification without being subject to the need of con-
trolling Type I errors is extremely valuable. A model with
small misspecification can still be rejected in a hypothesis
test but can be rewarded by the supplemental effect size E.
For these reasons, we hope that the topic of effect size in
SEM will become a more active area of research. For now,
the development of E is a promising start.
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APPENDIX

This appendix provides the details on obtaining point estimates and
confidence intervals for the effect size measures. We focus on E3 since
the procedure is parallel for the other effect size measures. As in the
main body of the article, we will denote E3 as E here. To obtain
a point estimate of E, the procedure in Section 3 of Yuan and Marshall
(2004) is slightly modified and outlined below:

● Estimate EðTMLjH1Þ by TML

● Estimate EðTMLjH0Þ:

– Choose an admissible ~θ, such as the ML estimate θ̂.
– Get the model-implied covariance ~Σ ¼ Σð~θÞ.
– Transform the sample data xi to yi ¼ Σ1=2ðθÞS�1=2xi for

i ¼ 1; 2; :::; n.
– Take B0 bootstrap samples from y ¼ ðy1; y2; :::; ynÞ.
– Calculate TML for each of the B0 samples, denoted as T�

b .

– Estimate EðTMLjH0Þ by �T�
ML ¼ PB0

b¼1
T�
b=B0.

● Ê ¼ TML��T�
ML

N�1

� �1=2

To create a confidence interval, another layer of bootstrap is added to the
process we described above. This corresponds to Algorithm II from Yuan and
Marshall (2004):

● Generate B1 bootstrap samples from x ¼ ðx1; x2; :::; xnÞ denoted
x�b ¼ ðx�1; x�2; :::; x�nÞ.

● Calculate TML for each bootstrap sample denoted T�
b .

● Choose any admissible ~θ.
● Get the model-implied covariance ~Σ ¼ Σð~θÞ.
● Transform each bootstrap sample x�b into y�b ¼ ðy�1; :::; y�nÞ where

y�i ¼ Σ1=2ð~θÞS��1=2
b x�i for i ¼ 1; 2; :::; n and where S�b is the covar-

iance matrix of x�b.

● Take B0 bootstrap samples from y�b ¼ ðy�1; :::; y�nÞ denoted as
y��bj ¼ ðy��1 ; y��2 ; :::; y��n Þ.

● Calculate TML for each of the y��bj bootstrap samples denoted as T��
bj .

● Take the average of the second-layer test statistics �T��
b ¼ PB0

j¼1
T��
bj =B0.

● Obtain B1 estimates of Ê�
b ¼ ðT�

b��T��
b

N�1 Þ1=2.
● Rank the Ê�

b estimates and use them to construct percentile, BC, and
BCa confidence intervals as usual (see Efron & Tibshirani, 1994).
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