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Abstract

This article is concerned with standard errors (SEs) and confidence intervals (CIs) for explora-
tory factor analysis (EFA) in different situations. The authors adapt a sandwich SE estimator for
EFA parameters to accommodate nonnormal data and imperfect models, factor extraction with
maximum likelihood and ordinary least squares, and factor rotation with CF-varimax, CF-quar-
timax, geomin, or target rotation. They illustrate the sandwich SEs and CIs using nonnormal
continuous data and ordinal data. They also compare SE estimates and CIs of the conventional
information method, the sandwich method, and the bootstrap method using simulated data.
The sandwich method and the bootstrap method are more satisfactory than the information
method for EFA with nonnormal data and model approximation error.
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Introduction

Exploratory factor analysis (EFA) is a widely used statistical procedure in the social and beha-

vioral sciences. It is a data-driven approach for understanding correlations among manifest vari-

ables with fewer latent factors. Cudeck and O’Dell (1994) encouraged factor analysts to

examine both point estimates and standard error (SE) estimates (and confidence intervals [CIs])

when interpreting EFA results. If factor analysts examine only point estimates, results and con-

clusions can be misleading because these point estimates may be associated with SEs of differ-

ent sizes or CIs of different widths.

EFA SEs were originally derived for maximum likelihood (ML) estimates under the assump-

tions that (a) the EFA model fits perfectly in the population and (b) manifest variables are
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normally distributed (Jennrich, 1973). Because the SE involves the information matrix, the

authors refer to it as the information SE.1 The two assumptions for the information SE do not

hold in many EFA applications.

The authors present a sandwich method for estimating SEs for rotated factor loadings and

factor correlations in EFA. They first describe a general form of the sandwich SE estimator and

then adapt it to accommodate different features of EFA models: three data distributions (normal

data, nonnormal continuous data, and ordinal data), two estimation methods (ML and ordinary

least squares [OLS]), four rotation criteria (CF-varimax, CF-quartimax, geomin, and target), and

imperfect models. A sandwich SE estimator was first developed for estimating SEs in nonlinear

regression with model error (White, 1981); it has been adapted to estimate EFA SEs with non-

normal variables and/or model error (Asparouhov & Muthén, 2009; Lee, Zhang, & Edwards,

2012; Yuan, Marshall, & Bentler, 2002). Previous adaptations focused on deriving EFA SEs for

a particular combination of the estimation method and data distribution; the authors’ goal is to

fully exploit the versatility of the sandwich SE estimator in EFA. The authors explain how the

current adaptation includes previous adaptations as special cases. In addition, they implement

the sandwich SE estimator in an R package EFAutilities (Zhang, Jiang, Hattori, & Trichtinger,

2018) to make it accessible to applied researchers.

The rest of the article is organized as follows. The authors first describe the estimation and

interpretation of EFA. They then present the concept of imperfect EFA models and their conse-

quences in model estimation and model interpretation. They next describe a sandwich SE esti-

mator, which provides appropriate SEs for imperfect EFA models in a variety of conditions. In

particular, they explain how components of the sandwich SE estimator are changed to accom-

modate different features of the EFA model. They demonstrate the versatility of the sandwich

SE estimator with two empirical data sets and explore its statistical properties with simulated

data. Finally, they provide several remarks on its theoretical and practical implications.

The Estimation and Interpretation of EFA

The EFA model is often estimated using a two-step procedure. The first step is factor extraction,

in which an unrotated factor loading matrix A is obtained by minimizing a discrepancy function

of the sample correlation matrix R and the model implied correlation matrix P = AA0 + Dc. The

p3p diagonal matrix Dc contains unique variances. Two widely used discrepancy functions are

ML and OLS. Except in one-factor models, the unrotated factor loading matrix A is rarely inter-

pretable. The second step of EFA is to rotate A with the aim of improving its interpretability.

One can conduct factor rotation obliquely or orthogonally. Factors are allowed to be correlated

in oblique rotation, but they are uncorrelated in orthogonal rotation. Oblique rotation tends to

produce clearer factor loading matrices than orthogonal rotation. Examples of factor rotation

methods are CF-varimax, CF-quartimax, geomin, and target rotation (Browne, 2001).

The authors propose to interpret factor loadings with the aid of their CIs. We can divide fac-

tor loadings into four types according to their CIs: a strongly salient loading, a salient loading, a

small factor loading, and a noninformative factor loading. Let a be a criterion value (for exam-

ple, 0:3 or 0:4) chosen by a factor analyst according to her substantive knowledge. If the lower

end of the CI of a positive loading is larger than a (or the upper end of the CI of a negative sali-

ent loading is less than �a), the factor loading is a strongly salient loading. A strongly salient

loading indicates a manifest variable that defines the corresponding factor. If the CI includes a

(or �a) but does not include zero, the factor loading is a salient loading. A salient loading indi-

cates some relation between the manifest variable and the factor, but the relation tends to be

weaker than that of a strongly salient loading. If the whole CI is between �a and a, the factor

loading is a small loading. A small loading indicates that a factor does not importantly influence
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the corresponding manifest variable. In particular, if the CI includes zero, it indicates the rela-

tion between the factor and the manifest variable is not detectable at the current sample size. If

the CI contains both zero and a (or �a), the factor loading is a noninformative loading. A non-

informative loading provides little information about the strength or the direction of the relation

between the manifest variable and the factor. Of course, the criterion value a is still subjectively

chosen. Because EFA is an exploratory procedure and it should be followed by a confirmatory

procedure, sound human judgment often aids rather than hinders the extraction of information

from data using EFA. Nevertheless, the authors feel that the use of CIs will improve decisions

regarding interpreting loadings regardless of how the criterion value a is chosen. For example,

let two factor loadings l1 and l2 have the same point estimate of 0:4, but the CI for l1 is [0.35,

0.45] and the CI for l2 is [–0.21, 1.0]. Let the criterion value a be 0:3. According to the CIs, l1

is a strongly salient factor loading, but l2 is a noninformative loading. One would regard both

factor loadings as salient if one does not consider CIs.

Imperfect EFA Models

A parsimonious model can never capture the full richness of real-world phenomena. The best

researchers can hope for is that a model ‘‘approximately’’ holds in the population. MacCallum

(2003) examined consequences of imperfect EFA models. He argued that imperfect EFA mod-

els are unavoidable; for example, the influence of factors on manifest variables could be non-

linear, or there could be too many minor factors to be included in the model.

The unavoidability of imperfect EFA models has profound implications for the estimation

and interpretation of EFA models. Let P0 be the population correlation matrix. Factor analyzing

P0 does not produce a perfectly fitting EFA model. Nevertheless, minimizing a discrepancy

function f (P0, P(u)) with regard to u produces a set of parameter values u0, which includes the

factor loading matrix L0 and the factor correlation matrix F0. The minimum discrepancy func-

tion value f (P0, P(u0)) is referred to as the error of approximation. Although the EFA model

with u0 does not account for P0 completely, the EFA model can still be useful if it helps us

understand P0 with m common factors. Of course, the EFA model is not helpful if the error of

approximation is large. A commonly used method for measuring the error of the approximation

is the root mean square error of approximation (RMSEA), and RMSEA values of 0:00, 0:05,

0:08, and 0:10 correspond to perfect fit, close fit, acceptable fit, and unacceptable fit, respec-

tively (Browne & Cudeck, 1993).

Note that u0 contains population values rather than sample estimates because the EFA model

is estimated with the population correlation matrix P0. Let R be a sample correlation matrix

drawn from the population. Factor analyzing R produces bu, which includes bL and bF. The sam-

ple estimate bu is a consistent estimate for the population values u0 even with model approxima-

tion error and nonnormal data.

Estimating SEs for bu with the information method assumes that there is no model error in

the population. The authors next describe a sandwich SE method, which provides consistent SE

estimates for bu even with model approximation error. In addition, it can be adapted to accom-

modate different estimation methods, different factor rotation methods, and different data

distributions.

A Sandwich Method for Estimating SEs in EFA

The large sample distribution of bu is multivariate normal with mean vector u0 and covariance

matrix Ω. The covariance matrix Ω is computed using a sandwich method2
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The matrix (∂2f )=(∂u∂u0) contains the second derivatives of the discrepancy function with

regard to model parameters; the vector c(u) contains constraint functions imposed on rotated

factor loadings and factor correlations to deal with different factor rotation methods.

Although similar SE estimates have been described previously for EFA with particular com-

binations of data types, estimation methods, and rotation methods (Yuan et al., 2002, for ML

estimates, orthogonal rotation, and continuous data; Lee et al., 2012, for OLS estimates, oblique

rotation, and ordinal variables; Asparouhov & Muthén, 2009, for exploratory structural equa-

tion models), the authors’ goal here is to exploit the versatility of the sandwich SE estimator to

its full extent and to show how to adapt it to accommodate different features of EFA models.

Nonnormal Data

We can readily adapt the sandwich SE estimator to accommodate nonnormal data because we

factor analyze the correlation matrix rather than scaling the results after factor analyzing the

covariance matrix. Note that factor analyzing the correlation matrix is much more common than

factor analyzing the covariance matrix in EFA. The key adaptation is to properly specify the

asymptotic covariance matrix (G in Equation 1) of manifest variable correlations for different

types of data. Browne and Shapiro (1986) derived a matrix expression of G for continuous but

nonnormal data. When data are ordinal, their polychoric correlations are factor analyzed. The

polychoric correlations are estimated using a two-stage method (Olsson, 1979), and their asymp-

totic covariance matrix G is estimated using an estimating equation method (Yuan & Schuster,

2013).

Different Levels of Model Approximation Error

The sandwich SE estimator allows any level of model approximation error. When no model

approximation error is present in the population, we can simplify the sandwich SE estimator in

two ways. First, the second derivatives (∂2f )=(∂u∂u0) in Equation 2 are no longer necessary. We

can replace the matrix of second derivatives by the product of first derivatives (∂f =∂u)(∂f =∂u)
0
.

Second, G can be estimated using the model-implied correlations bP instead of R.

We can greatly simplify the SE estimation in EFA if no model approximation error com-

bines with normal data and ML estimation. The submatrix A
11 in Equation 2 alone provides

SEs (Jennrich, 1974); they are information SEs. The information SEs are commonly computed

in EFA software (CEFA, Browne, Cudeck, Tateneni, & Mels, 2010; PROC FACTOR, SAS

Institute, 2006).
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ML Estimation and OLS Estimation

Different factor estimation methods require modifications to the partial derivatives

(∂2f )=(∂u∂r0) in the middle part and the second derivatives (∂2f )=(∂u∂u0) in the outer part of

the sandwich SE estimator. Such derivatives for ML estimation and OLS estimation were

described by Zhang, Preacher, and Jennrich (2012).

Factor Rotation Methods

Different rotation methods require modification to the constraint function c(u) in Equation 2.

The constraint functions corresponding to the Crawford-Ferguson family were derived by

Jennrich (1973), and constraint functions corresponding to CF-varimax, CF-quartimax, geomin,

and target rotation are documented in Tateneni (1998).

An approximate 95% CI for a rotated factor loading is constructed by (blL, blU ) =

(bl � 1:963bsl, bl + 1:963bsl). Here, bl is a point estimate and bsl is its SE estimate, which is

obtained by computing the square root of a diagonal element of Ω in Equation 1.

Empirical Illustrations

To illustrate the versatility of the sandwich SE estimator of Equation 1, the authors compute SEs

and CIs for two empirical data sets. They present point estimates and SE estimates to save space.

They include the tables for CIs and the R code for empirical illustrations in an online supporting

file.3

EFA With Nonnormal Continuous Variables

Luo et al. (2008) reported a study on marital satisfaction of urban Chinese couples. Their parti-

cipants were 537 couples in the first 3 years of their first marriage. The current illustration

includes 28 facet scores of the Chinese Personality Assessment Inventory (Cheung et al., 1996)

from the 537 wives. The authors extracted four factors from the sample correlation matrix using

ML. The 90% CI for the RMSEA is [0.038, 0.049], which indicates close fit for the four-factor

EFA model (Browne & Cudeck, 1993). The test of perfect fit is rejected, however. The factor

rotation method was oblique CF-varimax.

The authors estimate SEs for rotated factor loadings and factor correlations using three meth-

ods: the sandwich method, the bootstrap method, and the information method. The information

method assumes normal variables and a perfect EFA model, but the sandwich method and the

bootstrap method do not make such assumptions. The number of bootstrap samples was 2,000.

Table 1 reports point estimates and two types of SE estimates (sandwich SE estimates, boot-

strap SE estimates). These two types of SE estimates agree with each other up to the second

decimal place for most parameters; the largest difference is about 0:01.4 According to the sub-

stantive theory, the authors expect some factor loadings to be large (shown in bold font) and

other factor loadings to be small (shown in regular font). We can construct CIs using the point

estimates and SE estimates to assess these expectations. CIs constructed with these two types of

SE estimates are essentially the same. Let the criterion value be 0:3. Most of these expected

large loadings are strongly salient loadings or salient loadings. The 95% CI for l11 is [0.60,

0.75]; it is interpreted as a strongly salient loading because its lower end is larger than 0:3; it

indicates a strong association between the manifest variable ‘‘novelty’’ and the factor ‘‘social

potency.’’ The 95% CI for l61 is [0.22, 0.47]; it is interpreted as a salient loading because it

contains 0:3 but not 0; it indicates a weak to moderate level of association between the manifest
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variable ‘‘aesthetics’’ and the factor ‘‘social potency.’’ Most expected small loadings are small.

The CI for l91 is [–0.08, 0.08]; it is interpreted as a small loading because the whole CI is

between �0:3 and 0:3; it indicates a negligible association between the manifest variable

‘‘responsibility’’ and the factor ‘‘social potency.’’ Several factor loadings deviate from the

expected pattern, however. The variable ‘‘traditionalism-modernity’’ was expected to load

highly on ‘‘interpersonal relatedness,’’ but the CI is [–0.02, 0.17]; it is interpreted as a small

loading. The loading of the same variable on ‘‘accommodation’’ was expected to be low, but

the CI is [–0.72, –0.53]; it is interpreted as a strongly salient loading.

EFA With Ordinal Variables

The second empirical data set involves 228 participants and 44 ordinal variables (Luo, 2005).5

These variables are items of the Big Five Inventory (John, Donahue, & Kentle, 1991). The vari-

ables are five-point Likert-type scales: disagree strongly, disagree a little, neither agree nor

disagree, agree a little, and agree strongly. Because the data are ordinal variables, the polycho-

ric correlation matrix is factor analyzed instead of the Pearson correlation matrix. The factor

estimation method is OLS estimation. A five-factor model fits the data well but not perfectly: a

90% CI for the RMSEA is [0.043, 0.054]. Model error is present in the EFA model. The

authors illustrate the sandwich SE estimates for four oblique rotation methods: CF-varimax,

CF-quartimax, geomin, and target rotation. The sandwich method involves the nontrivial task

of estimating the asymptotic covariance matrix (G in Equation 1) of polychoric correlations.

The polychoric correlation matrix is of order 44 by 44; their asymptotic covariance matrix is of

order (44343)=2 by (44343)=2; the number of nonduplicated elements in the matrix is

447,931.

The point estimates for rotated factor loadings and factor correlations are very close under

the four rotation methods. The congruence coefficients (Gorsuch, 1983, p. 285) of ‘‘extraver-

sion’’ among the four rotation methods range from 0:996 to 1:000; the congruence coefficient

ranges for ‘‘agreeableness,’’ ‘‘conscientiousness,’’ ‘‘neuroticism,’’ and ‘‘openness’’ are 0:987

to 1:000, 0:996 to 1:000, 0:991 to 1:000, and 0:999 to 1:000, respectively. Figure 1 displays the

comparisons of SE estimates under the four rotation methods. SE estimates under CF-varimax,

geomin, and target rotation are similar. SE estimates under CF-quartimax rotation differ from

those of the other three rotation methods.

Table 2 presents point estimates and SE estimates with geomin rotation. Results of CF-

varimax, CF-quartimax, and target rotation are presented in the online supporting file.

According to the substantive theory, the authors expect some factor loadings to be large

(shown in bold font) and other factor loadings to be small (shown in regular font). We can

construct CIs using the point estimates and SE estimates to assess these expectations. Most

of these expected large loadings are strongly salient loadings or salient loadings. The 95%
CI for l11 is [0.67, 0.90]; it is interpretd as a strongly salient loading because its lower end

is larger than 0:3; it indicates a strong association between the manifest variable ‘‘talkative’’

and the factor ‘‘extraversion.’’ Most expected small loadings are small. The CI for l12 is [–

0.09, 0.26]; it is interpreted as a small loading; it indicates a negligible association between

the manifest variable ‘‘responsibility’’ and the factor ‘‘social potency.’’ Several CIs are

wide. The 95% CI of factor loading of ‘‘plans’’ on ‘‘agreeableness’’ is [–0.13, 0.39]; it is

interpreted as noninformative because it includes both zero and 0:3; the inference on the

loading is inconclusive due to the wide CI.
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A Simulation Study

The Design of the Simulation Study

The goal of the simulation study is to assess the influence of model error and data distributions

on SE estimates and CIs for factor loadings and factor correlations. The authors consider four

levels of model error (RMSEA = 0:00, 0:05, 0:08, and 0:10), three distributions (a normal dis-

tribution, an elliptical distribution, and a skewed distribution), and five levels of sample size

(N = 100, N = 200, N = 537, N = 800, and N = 2,000). One thousand random samples are gener-

ated in each of the 60 conditions. Note that the four levels of the RMSEA correspond to perfect

fit, close fit, acceptable fit, and unacceptable fit (Browne & Cudeck, 1993). The population

Table 1. Factor Analysis of Luo et al.’s (2008) Personality Data.

Rotated factor loadings

Socplot Depend Accom Interper

Novelty .67 [.04, .04] .02 [.05, .05] .12 [.04, .04] .15 [.05, .06]
Diversity .53 [.06, .06] .15 [.05, .05] .19 [.04, .04] .39 [.06, .07]
Diverse-Thinking .46 [.06, .06] �.01 [.05, .05] �.14 [.05, .05] .31 [.07, .07]
Leadership .67 [.04, .04] .04 [.04, .05] �.3 [.05, .05] �.08 [.06, .06]
Logical-affective .47 [.05, .05] �.16 [.05, .05] �.07 [.04, .04] .18 [.06, .06]
Aesthetics .34 [.07, .07] .09 [.05, .05] �.13 [.05, .05] .22 [.07, .07]
Extroversion-introversion .57 [.05, .05] �.10 [.07, .07] .00 [.04, .04] �.07 [.05, .06]
Enterprise .54 [.06, .07] �.43 [.06, .07] .10 [.04, .04] �.27 [.04, .05]
Responsibility .00 [.04, .04] �.62 [.05, .05] �.06 [.04, .04] .12 [.05, .05]
Emotionality .03 [.04, .05] .75 [.04, .04] .05 [.04, .04] .06 [.04, .04]
Inferiority-self-acceptance �.22 [.04, .04] .46 [.04, .04] �.44 [.05, .05] �.19 [.04, .05]
Practical-mindedness .03 [.04, .04] �.51 [.05, .05] �.03 [.05, .06] .26 [.05, .05]
Optimism-pessimism .28 [.05, .05] �.48 [.05, .05] .16 [.05, .05] �.01 [.05, .05]
Meticulousness .01 [.05, .05] �.54 [.05, .06] �.18 [.04, .04] .05 [.05, .05]
Face .06 [.06, .06] .28 [.06, .06] �.31 [.05, .05] .24 [.06, .06]
Internal-external-control .02 [.05, .05] �.22 [.05, .05] .37 [.04, .04] �.07 [.05, .06]
Family-orientation �.02 [.04, .04] �.38 [.05, .05] .28 [.06, .06] .38 [.05, .05]
Defensiveness .14 [.04, .04] .26 [.04, .04] �.64 [.05, .05] �.17 [.06, .06]
Graciousness-meanness �.05 [.04, .04] �.24 [.05, .05] .62 [.05, .05] .23 [.06, .06]
Interpersonal-tolerance .20 [.05, .05] �.08 [.05, .05] .54 [.04, .04] .16 [.05, .05]
Self-social-orientation .21 [.06, .06] .13 [.06, .06] �.59 [.05, .05] �.02 [.06, .07]
Veraciousness-slickness �.12 [.04, .04] �.25 [.05, .05] .48 [.06, .07] .38 [.05, .06]
Traditionalism-modernity �.16 [.05, .05] �.26 [.06, .06] �.62 [.05, .05] .08 [.05, .05]
Relationship-orientation .04 [.05, .06] .07 [.05, .05] �.09 [.05, .05] .72 [.03, .03]
Social-sensitivity .29 [.05, .06] .06 [.04, .04] �.14 [.04, .04] .60 [.04, .05]
Discipline .06 [.04, .04] �.18 [.05, .05] �.73 [.04, .04] .30 [.05, .05]
Harmony �.03 [.04, .04] �.25 [.04, .04] .17 [.05, .06] .65 [.04, .04]
Thrift-extravagance �.14 [.06, .06] �.07 [.07, .07] �.19 [.06, .06] .36 [.06, .06]

Rotated factor correlations

Socpot Depend Accom Interper

Socplot 1
Depend �.10 [.04, .04] 1
Accom �.06 [.04, .04] �.31 [.03, .03] 1
Interper .21 [.04, .04] �.30 [.04, .04] .14 [.03, .03] 1

Note. The table presents point estimates and two types of SE estimates (sandwich and bootstrap, in the parentheses).

Socpot = social potency; depend = dependability; accom = accommodation; interper = interpersonal relatedness.
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parameters of the simulation study are chosen to be the parameter estimates of an empirical

illustration reported earlier (Luo et al., 2008). The sample size of the empirical study was

N = 537; the authors include four other sample sizes so they can generalize the results to a

wider range of conditions.

Let bP be the model implied correlation matrix computed using bL and bF of Table 1. We

can construct population correlation matrices P according to a method described by Yuan and

Hayashi (2003):

P = bP + t R�bP� �
: ð3Þ

Here, R is the sample correlation matrix; t is a positive number that controls the amount of

model error. When t = 0, the population correlation matrix P = bP; the RMSEA is 0 and no model

approximation error is present in the population. Adjusting t produces three levels of model

error: RMSEA values of 0:05, 0:08, and 0:10. Although the population correlation matrices are

different at these four levels of model error,6 factor analysis of these correlation matrices pro-

duces the same parameter values.

The three distributions are a normal distribution, an elliptical distribution, and a skewed dis-

tribution. In the normal distribution condition, manifest variables are generated from a multi-

variate normal distribution with a null mean vector and a covariance matrix P. In the elliptical

distribution condition, manifest variables are generated from a mixture of two multivariate nor-

mal distributions (Ichikawa & Konishi, 1995). Both the normal distribution and the elliptical

distribution are symmetric, but the elliptical distribution has heavier tails than the normal distri-

bution. In the skewed distribution, manifest variables are generated using a method described in

Yuan and Bentler (1997). The skewed distribution differs from the normal distribution in two

ways: It is no longer a symmetric distribution; the marginal kurtosis of different components of

Figure 1. Comparisons of SE estimates under four rotation methods with ordinal data (Luo, 2005).
Note. CF = Crawford-Ferguson.
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Table 2. Factor Analysis of Ordinal Data (Luo, 2005).

Factor loadings

E A C N O

E-items Talkative .785 (.057) .087 (.088) �.028 (.052) .197 (.080) .087 (.065)
Reserved (R) �.570 (.067) �.037 (.068) .067 (.075) .146 (.080) .028 (.061)
Full Energy .499 (.083) .361 (.118) .072 (.072) �.169 (.081) .094 (.080)
Enthusiastic .579 (.088) .422 (.097) �.069 (.065) �.023 (.053) .245 (.068)
Quiet (R) �.853 (.047) .006 (.067) �.036 (.063) �.041 (.064) .012 (.052)
Assertive .539 (.073) �.107 (.093) .148 (.078) �.091 (.072) .303 (.080)
Shy (R) �.711 (.056) .118 (.067) �.096 (.077) .126 (.074) .099 (.066)
Outgoing .775 (.058) .261 (.101) .022 (.050) .019 (.050) �.039 (.055)

A-items Find Fault (R) .007 (.079) �.395 (.091) �.018 (.082) .296 (.099) .009 (.072)
Helpful �.054 (.085) .536 (.087) .088 (.093) �.031 (.082) .086 (.080)
Quarrels (R) .205 (.109) �.589 (.099) �.056 (.088) .337 (.116) .038 (.058)
Forgiving .011 (.075) .629 (.063) �.081 (.079) �.054 (.076) .055 (.081)
Trusting .118 (.098) .667 (.094) .025 (.098) �.017 (.066) �.070 (.083)
Cold (R) �.083 (.112) �.742 (.072) .067 (.086) .213 (.112) .162 (.072)
Considerate �.210 (.112) .741 (.061) .019 (.066) .040 (.055) .271 (.075)
Rude (R) .168 (.104) �.531 (.093) �.062 (.088) .388 (.107) �.027 (.054)
Cooperative .167 (.112) .663 (.081) .178 (.095) .087 (.072) .000 (.053)

C-items Thorough �.009 (.057) .069 (.099) .762 (.082) �.033 (.058) .091 (.067)
Careless (R) .047 (.072) .014 (.062) �.496 (.099) .250 (.094) .220 (.083)
Reliable .046 (.071) .278 (.132) .574 (.099) .091 (.091) .043 (.064)
Disorganized (R) .079 (.057) .026 (.054) �.729 (.079) .014 (.085) .193 (.101)
Lazy (R) �.025 (.083) �.114 (.070) �.538 (.079) .121 (.085) .037 (.072)
Persevere �.097 (.074) �.014 (.071) .590 (.083) �.031 (.065) .234 (.085)
Efficient .025 (.070) .148 (.126) .634 (.093) �.026 (.062) .145 (.084)
Plans .109 (.081) .129 (.132) .664 (.089) .093 (.071) .003 (.054)
Distracted (R) �.024 (.071) .153 (.074) �.382 (.080) .491 (.065) .031 (.054)

N-items Blue �.123 (.076) �.190 (.092) �.213 (.087) .563 (.071) .126 (.071)
Relaxed (R) �.027 (.068) .037 (.069) .029 (.094) �.718 (.071) .023 (.075)
Tense �.050 (.059) �.043 (.052) .083 (.072) .777 (.054) .159 (.078)
Worries �.033 (.047) .096 (.066) �.049 (.065) .773 (.064) �.116 (.082)
Emotionally Stable (R) �.019 (.051) .141 (.084) �.047 (.078) �.649 (.077) .145 (.079)
Moody .086 (.079) �.074 (.086) .017 (.071) .751 (.059) �.010 (.060)
Calm (R) .061 (.083) .059 (.091) .123 (.106) �.544 (.079) .075 (.073)
Nervous �.242 (.074) .209 (.074) .040 (.057) .666 (.062) �.118 (.065)

O-items Ideas .157 (.077) �.048 (.058) .090 (.102) �.041 (.072) .700 (.057)
Curious .191 (.111) .165 (.089) .010 (.086) �.030 (.076) .468 (.076)
Ingenious .054 (.075) �.061 (.076) .183 (.096) .030 (.065) .601 (.061)
Imaginative .122 (.089) .052 (.069) �.075 (.093) .049 (.061) .712 (.051)
Inventive �.007 (.042) �.066 (.053) .026 (.078) �.159 (.076) .793 (.044)
Artistic �.145 (.130) .111 (.093) �.018 (.079) .027 (.066) .666 (.075)
Routine (R) .057 (.086) .025 (.085) .196 (.091) .141 (.086) �.233 (.071)
Reflect .173 (.089) .064 (.068) �.075 (.096) .060 (.072) .686 (.058)
Nonartistic (R) .052 (.100) .059 (.083) �.083 (.082) .093 (.087) �.417 (.091)
Sophisticated �.264 (.115) .057 (.090) .001 (.072) �.034 (.065) .635 (.069)

Factor correlations

E A C N O

E 1
A .138 (.059) 1
C .128 (.092) .288 (.084) 1
N �.249 (.071) �.193 (.088) �.302 (.070) 1
O .196 (.076) .146(.085) .090 (.089) �.121 (.080) 1

Note. OLS was used to extract five factors from polychoric correlations of ordinal variables; the factor rotation

method is oblique geomin. The table presents point estimates and SEs (in parentheses). (R) = reverse-coded items.

OLS = ordinary least squares.
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y are different. Note that the population correlation matrix is the same in all three distribution

conditions.

Results of the Simulation Study

In each simulated sample, the authors extract four factors using ML and conduct oblique rota-

tion using both CF-varimax and target rotation. They compute SEs for factor loadings and factor

correlations using three methods: the information method, the sandwich method, and the boot-

strap method. They construct CIs using point estimates and SE estimates.

Let ½buL, buU � be the CI for u. Its empirical coverage rate over 1,000 simulation samples is the

proportion of samples whose CI includes u. Table 3 reports the mean empirical coverage rates

(averaged across all factor loadings and factor correlations) of three types of CIs (sandwich CIs,

information CIs, and bootstrap CIs) for oblique target rotation.7

Four observations can be made on the mean empirical coverage rates of the three types of

CIs. First, all three types of CIs have satisfactory empirical coverage rates under the ideal con-

dition of normally distributed variables, no model error (RMSEA = 0:00), and moderately large

samples (N � 200). Second, as the amount of model error increases, the empirical coverage

rates of information CIs decrease. Such decreases are more pronounced when RMSEA = 0:08

and RMSEA = 0:10. The empirical coverage rates of sandwich CIs and bootstrap CIs are closer

to 95% regardless of the amount of model error. Third, the empirical coverage rates of informa-

tion CIs for nonnormal data are lower than those for normal data. The empirical coverage rates

of sandwich CIs and bootstrap CIs are close to 95% regardless of data distributions. Fourth,

increasing sample size makes empirical coverage rates of sandwich CIs and bootstrap CIs close

to 95% in model error and nonnormal data conditions, but increasing sample size does not

improve the empirical coverage rates of information CIs in such conditions.

Table 3. Average Empirical Coverage Rates of CIs, Target Rotation.

The mean empirical coverage rate across all parameters

RMSEA .00 .05 .08 .10

Dist N Info Sand Boot Info Sand Boot Info Sand Boot Info Sand Boot

N 100 92.7 95.3 96.2 90.8 95.7 96.6 86.3 94.2 95.8 80.7 92.1 94.8
200 94.2 95.1 95.6 92.8 95.2 96.0 89.2 95.2 96.5 82.8 93.7 95.4
537 94.8 95.0 95.2 93.3 95.1 95.1 90.7 95.0 95.5 85.5 95.0 96.3
800 94.8 95.1 95.1 93.5 95.0 95.1 90.6 95.1 95.3 86.7 95.0 96.3

2,000 95.0 95.1 95.0 93.6 94.9 95.1 91.0 95.1 95.2 87.1 95.1 95.5
E 100 86.8 94.7 96.2 84.0 94.7 95.9 79.5 93.2 95.2 74.4 91.8 93.9

200 89.6 95.0 95.8 87.6 95.2 96.4 83.0 94.5 96.2 76.6 92.2 95.2
537 90.4 95.0 95.1 88.6 95.1 95.3 85.0 95.1 95.8 79.5 94.5 96.1
800 90.7 95.0 95.2 88.9 94.9 95.2 85.7 95.2 95.6 80.3 94.8 96.4

2,000 91.0 95.1 95.1 88.9 95.0 95.1 85.9 95.2 95.0 81.8 95.2 95.7
S 100 86.5 94.1 96.5 81.2 93.4 95.3 76.0 91.6 93.7 71.7 89.8 92.2

200 89.2 94.8 96.2 85.6 94.8 97.0 78.3 93.3 95.7 72.0 90.9 93.8
537 90.2 94.7 95.2 89.6 94.9 96.4 83.7 94.3 96.9 74.2 91.9 95.1
800 90.3 94.6 95.0 90.0 94.9 95.9 84.8 95.0 97.0 77.5 93.2 96.2

2,000 90.4 94.8 94.9 90.1 94.8 95.2 86.8 95.2 96.3 81.0 95.0 97.2

Note. CI = confidence interval; RMSEA = the root mean square error of approximation; Emp = empirical SEs; Info =

SEs with the information matrix; Sand = sandwich SEs; Boot = bootstrap SEs; N = normal distribution; E = elliptical

distribution; S = skewed distribution.
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Table 4 reports the mean empirical coverage rates (averaged across all factor loadings and

factor correlations) of three types of CIs (sandwich CIs, information CIs, and bootstrap CIs) for

oblique CF-varimax rotation. Although the four observations made on target rotation apply to

CF-varimax rotation, the sandwich CIs and the bootstrap CIs perform less satisfactorily for CF-

varimax rotation than for target rotation. The empirical coverage rates of sandwich CIs are

lower than 95% for small samples and move closer to 95% at larger samples; the phenomenon

is particularly noticeable when the amounts of model error are larger (RMSEA = 0:08 and

RMSEA = 0:10). The empirical coverage rates of bootstrap CIs are higher than 95% in most

conditions.

The relative advantage of target rotation over CF-varimax rotation is expected. CF-varimax

rotation is an automatic rotation method, but target rotation requires the factor analyst to provide

a target matrix that reflects substantive knowledge about the factor loading pattern. Regardless

of factor rotation methods, data distributions, and levels of model error, the sandwich method

provides useful SE estimates and CIs at a moderately large sample size.

Concluding Comments

A parsimonious EFA model is unlikely to perfectly represent complicated real-world phenom-

ena, and model error is always present in EFA (MacCallum, 2003). Let us consider a hypotheti-

cal scenario in which 10 manifest variables are affected by two major factors and 30 minor

factors. Only the two major factors have large factor loadings and the 30 minor factors have

only small loadings. A useful factor analysis model does not fit data perfectly, but it captures

the influence of major common factors with the presence of minor factors that are like back-

ground noise. The information SEs and CIs may be invalid with model error, but sandwich SEs

Table 4. Average Empirical Coverage Rates of CIs, CF-Varimax.

The mean empirical coverage rate across all parameters

RMSEA .00 .05 .08 .10

Dist N Info Sand Boot Info Sand Boot Info Sand Boot Info Sand Boot

N 100 92.2 94.5 97.6 87.9 93.5 96.8 82.9 91.9 96.2 78.1 89.8 94.9
200 93.7 94.8 97.3 92.6 95.5 96.9 85.6 93.4 97.5 80.8 91.9 96.3
537 94.5 95.4 96.1 93.1 95.2 96.3 89.8 95.2 96.7 83.5 94.2 96.7
800 94.6 94.9 95.7 93.5 95.5 96.2 90.3 95.6 96.4 84.5 95.3 97.3

2,000 94.8 95.1 95.1 93.2 95.0 95.5 90.3 95.1 95.3 85.1 95.0 96.1
E 100 85.2 93.8 96.5 82.3 93.5 96.4 76.2 91.5 94.8 73.4 90.1 93.6

200 89.9 95.3 96.8 86.4 94.7 97.3 79.9 93.3 96.6 73.9 91.4 94.9
537 90.5 95.1 96.4 88.5 95.0 96.5 84.0 95.2 96.9 77.0 93.2 96.6
800 91.4 95.4 95.8 89.1 95.7 95.9 84.3 95.4 96.8 77.3 94.7 96.9

2,000 91.2 95.1 95.1 88.6 95.1 95.3 85.0 95.1 95.4 79.7 95.6 96.5
S 100 85.2 93.3 93.5 79.7 92.3 95.1 75.0 91.1 92.7 70.7 88.4 92.2

200 88.9 94.1 97.4 84.1 93.4 97.2 76.2 90.8 94.6 69.9 89.0 93.0
537 90.4 94.8 96.0 88.7 94.9 97.4 82.2 94.5 97.7 73.8 90.3 96.0
800 90.5 95.2 95.6 88.9 94.8 96.8 83.8 94.9 97.7 73.2 91.6 96.8

2,000 90.2 94.9 95.0 89.7 95.2 95.5 86.1 95.0 96.4 78.9 94.4 97.5

Note. CI = confidence interval; CF = Crawford-Ferguson; RMSEA = the root mean square error of approximation;

Emp = empirical SEs; Info = SEs with the information matrix; Sand = sandwich SEs; Boot = bootstrap SEs; N = normal

distribution; E = elliptical distribution; S = skewed distribution.
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and CIs are still valid. Factor analysts can interpret rotated factor loadings and factor correla-

tions by examining their sandwich CIs.

A common reason for nonnormal distributions is the use of ordinal variables. To accommo-

date ordinal variables, the polychoric correlation matrix is factor analyzed. Because polychoric

correlation matrices are often not positive definite, ML estimation is infeasible. The authors

consider OLS estimation for its computational robustness. Although estimating factor loadings

and factor correlations involves only polychoric correlations, estimating SEs and CIs involves

the asymptotic covariance matrix of polychoric correlations. Estimating such a large matrix is a

nontrivial task. For example, there are 44 ordinal variables in the second empirical study, and

the corresponding asymptotic covariance matrix has nearly half a million nonduplicated ele-

ments. The authors implemented an algorithm that uses an estimating equation approach (Yuan

& Schuster, 2013) to estimate the asymptotic covariances of polychoric correlations.

The sandwich SE estimator is more versatile than the bootstrap method (Ichikawa &

Konishi, 1995) and the infinitesimal jackknife method (Zhang et al., 2012). The bootstrap

method is inappropriate for geomin rotation, which tends to produce multiple local solutions

(Browne, 2001; Hattori, Zhang, & Preacher, 2017). The infinitesimal jackknife method is

equivalent to the sandwich SE estimator when manifest variables are continuous, but it is inap-

propriate for ordinal variables. The sandwich SE estimator can be adapted in both situations.

The R package EFAutilities (Zhang et al., 2018) implements the sandwich SE estimator and

the corresponding CIs. It computes SEs and CIs for EFA parameters with normal and nonnormal

data, two types of estimation method (ML and OLS), and oblique rotation and orthogonal rota-

tion with four rotation criteria (CF-varimax, CF-quartimax, geomin, or target), with any level of

model approximation error.
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Notes

1. It is commonly referred to as the normal theory based SE. The authors avoid this name because it

ignores the assumption of a perfectly fitting model in the population.

2. Most EFA models are estimated with sample correlation matrices. If a factor analyst is interested in

estimating EFA models with a sample covariance matrix, the sandwich method can be easily adapted.

The adaptation involves replacing G by the asymptotic covariance matrix of unique elements of a sam-

ple covariance matrix. All other components remain the same.

3. The address for the online file is https://www3.nd.edu/~gzhang3/Papers/SandwichEFA/Sandwich

EFA.html

4. The authors include comparisons between information SEs and sandwich SEs in the online supporting

file. For nearly all parameters, sandwich SE estimates are larger than the corresponding information

SE estimates.

5. The authors thank Shanhong Luo for making the data set available to them.

6. The four population correlation matrices are included in the online supporting file.

7. The results for CIs and SE estimates for single parameters are included in the online file.
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