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Overview

◮ Advantages of Hamiltonian MCMC (HMC)

◮ General idea of how HMC works

◮ Stan language and examples

◮ Interfaces that make Bayesian model fit almost routine (e.g,
brms)

Depending on the book that you select for this course, read either
Gelman et al. Chapter 12 or Kruschke Chapter 14. I also read
various other material from books, papers, and internet.
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Why Hamiltonian MCMC?

“Not all MCMC algorithms are created equal”
(Hoffman & Gelman, 2011)

Problems with Metropolis and Gibbs algorithms:

◮ Random walk behavior can take a long time to achieve
convergence, especially for complex, high dimensional models.

◮ In other words, they are inefficient at exploring the parameter
space.

◮ Can get stuck along wall when have highly correlated
parameters.

There is a physical analogy of sampling using Hamiltonian
dynamics.
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Local Zigging and Zapping of Gibbs
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HMC is Version of Metropolis(-Hastings)
Different way to get θpropose which adds auxil-
iary variables, φ

❄

Compute r = min(1,
p(θpropose,φpropose|y)
p(θcurrent,φcurrent|y)

)

❄ ❄

If r = 1 If r < 1

Accept θpropose

✯

Draw u from
Uniform(0,1)

❄

✛

If r > u

If r < u

Reject θpropose

✯ ❨
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Posterior Density: P (θ|y)
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-log(Posterior Density): − log(P (θ|y))
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Statistical Mechanics: movement over fixed time period
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Energy States
Add heat:
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Energy State: P (Ei) ∝ exp(−Ei/T )
where Ei is energy state and T is “temperature”. In this plot T is
low.
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Energy States: P (Ei) ∝ exp(−Ei/T )
where Ei is energy state and T is “temperature”. In this plot T is
high.
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How this Applies to HMC
◮ We create one auxiliary variable per parameter that we want

to estimate and this acts as “Momentum” or φi.
◮ Think of the parameter(s) as having a “location” or

“position”.
◮ Use the joint distribution of the parameter θ and φ,

E(θ, φ) = U(θ)
︸ ︷︷ ︸

potential

+K(φ)
︸ ︷︷ ︸

kinetic

= constant = total energy

The gravitational potential energy (i.e., U(θ)), is that which
is due to the parameter’s location or position.

◮ From previous slides

Pr(Energy) ∝ exp(−Energy state/T )

= exp(−(U(θ) +K(φ))/T )
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How this Applies to HMC (continued)

◮ Kinetic energy is

K(φ) =
d∑

i=1

φ2
i

2(mass)

We’ll just consider one parameter (i.e., d = 1) so

K(φ) = φ2/(2mass)

◮ Set Potential Energy to

U(θ) = − log[P (θ, y)]

= − log[P (y|θ)P (θ)]

and . . .
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How this Applies to HMC (continued)

Setting T = 1 and mass=1, substitute K(φ) and U(θ) into
equation for Pr(Energy),

P (θ, φ) ∝ exp[−(− log(P (y|θ)P (θ)) +
φ2

2
)]

= P (y|θ)P (θ)× exp

(
−φ2

2

)

︸ ︷︷ ︸

N(0,1)

≡ P (y|θ)P (θ)×N(φ, 0, 1)
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How this Applies to HMC (continued)

◮ With this setup, the Marginal density of θ, P (θ), is equal to
the posterior distribution of θ:

P (θ) =

∫

P (θ, φ)dφ

= zP (y|θ)P (θ)

∫

N(φ, 0, 1)dφ

︸ ︷︷ ︸

=1

= zP (y|θ)P (θ)

where z is just a normalizing constant.

◮ So, we sample from the joint distribution of θ and φ and
throw away φ.
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How do we do this?
Overview of Algorithm:

Iterate through the following steps:

1. Start with draw φcurrent N(0, 1)

2. Use “Leap Frog” to get proposals for estimates of θ and φ.

3. Compute ratio

r =
p(θproposed|y)p(φprosposed)

p(θcurrent|y)p(φcurrent)

4. Set value of θ for next iteratation,

θt =

{
θproposed with probability min(1, r)

θcurrent otherwise
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Leap Frog Step

Leap frog is a game played by children but here it is used to refer
to the splitting of momentum updates into half steps.

◮ This is the deterministic part of the algorithm.

◮ This is the mechanism which allows movement much to be
more rapid through the parameter space and suppresses the
random walking. This does the part of sampling more in areas
of high density.

◮ This mimicks the physical dynamics for continuous time and
makes “time” discrete.

We update both θ and φ
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Leap Frog Steps
Iterate through the following steps L times where L = the number
of leap cycles

1. Use the gradient (derivative) of the log-posterior density of θ,

φ← φ+
1

2
ǫ
d log p(θ|y)

dθ

2. Use the φ found in step 1 to update θ,

θ ← θ + ǫM−1φ

3. Do another half step and update φ

φ← φ+
1

2
ǫ
d log p(θ|y)

dθ
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The Beginning of HMC
This illustrates what leap steps do (Each has a different starting
place).
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Impact of ǫ
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Impact of L
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Multiple Chains Running HMC
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NUTS
No U-turn Sampler.

◮ Tuning HMC by trial and error is hard.
◮ NUTS is implemented in Stan and does the turning— finds L

and ǫ.
◮ Is the default in Stan.
◮ For more information on this see

Hoffman,M.D., & Gelman, A. (2011) The No-U-Turn sampler:
adaptively selecting path lengths in Hamiltonian sampling.
arXiv.1111.426v1 [stat.CO].

◮ “NUTS uses a recursive algorithm to build a set of likely
candidate points that span a wide swath of the target
distribution, stoping automatically when it starts to double
back and retrace its steps.”

◮ Also, it adapts the step size ǫ on the fly.
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Stan

◮ It implements HMC (and variational approximation of
Bayesian inference, and MLE for penalized maximum
likelihood estimation).

◮ It is a probabilistic programming language to specifying
statistical models that can be called through R using the rstan
package.

◮ It’s development was spearheaded by Gelman & Carpenter
and a 34 member development team.

◮ The program is named after Stanislaw Ulam (1909–1984) who
was a co-inventor of the Monte Carlo method.

◮ In Gelman et al. text they say that Stan stands for “Sampling
Through Adaptive Neighborhoods.”

◮ The Stan program is written in C++ and this shows up in
some of the input conventions.
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Stan

Input is highly structured and Stan is very picky.

The “Blocks” in this order

◮ data
◮ transformed data
◮ parameters
◮ transformed parameters
◮ model (REQUIRED)
◮ generated quantities
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Conventions in Stan
◮ Comments are indicated by double slashes, “//”
◮ Stan uses semi-colon (i.e., ;) to mark end of line or command,

like a period at the end of a sentence. This is the end-of-line
indicator in C++ (SAS also uses this and C++ underlies it
was well).

◮ Order matters!
◮ In the data and parameter (and others) blocks, you need to

specify what type of variables you will be using. Type include
real, int (integer), categorical, vector, and matrix.

◮ If there are lower or upper limits of data or parameters this
should be indicated.

◮ In the parameter block, you need to specify what are the
parameters.

◮ In the model block are priors followed by likelihood.
◮ In distributions, Stan uses standard deviation rather than

precision
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Conventions in Stan

Since gradients need to be computed, to achieve good
computational efficiency, Stan has some standard distributions
programed, including normal, student t, cauchy, uniform, and
others.

For full list see Table A-1 in Gelman et al. text, pages 576–569.
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Simple Example using Stan
For this (and others), I’ll use the 23 schools from the NELS data.

We’ll start with finding the mean and standard deviation of the
data.

See the document on course web-site:
Rmarkdown stan nels set.docx

We will work through the steps in working with Stan using this
document, starting simple and working to more complex models;
that is,
◮ Estimating mean and standard deviation.
◮ Simple linear regression.
◮ Multiple regression.
◮ HLM with random intercept...takes too long so switch to brms
◮ HLM with random intercept and slope.
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Stan Interfaces
There are a number of different packages that work with Stan. I
don’t want to rely on those written by authors of specific books
(i.e., teaching tools), but rather the following two:

rstanarm: Bayesian Applied Regression Modeling.

◮ This is designed to work much like other package and to “make
Bayesian estimation routine for the most common regression
model that applied researchers use.”

◮ Functions available include stan lm, stan glm, stan lmer,
stan glimer, and stan gamm4.

◮ Plenty of information and examples the internet.
◮ Good starting point is https://mc-stan.org/rstanarm/
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Stan Interfaces

brms package: Bayesian Regression Models

◮ This is an interface to fit Bayesian generalized (non)linear
multivariate multilevel models using Stan.

◮ Single and multi-level models can be fit.
◮ Wide range of possible models.
◮ A good starting point is Bürker, P.C. (2017). An R package

for Bayesian multilevel models using Stan. Journal of
Statistical Software, 80, doi: 10.18637/jss/v080.i01

◮ And the manual!
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brms package

We’ll go over same examples for nels for which we estimated using
Stan.
Recall:

◮ waic: widely applicable information criteria
◮ loo: leave one out cross-validation
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