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Overview
◮ Introduction to Bayesian computing.
◮ Markov Chain
◮ Metropolis algorithm for mean of normal given fixed variance.
◮ Revisit anorexia data.
◮ Practice problem with SAT data.
◮ Some tools for assessing convergence
◮ Metropolis algorithm for mean and variance of normal.
◮ Anorexia data.
◮ Practice problem.
◮ Summary

Depending on the book that you select for this course, read either
Gelman et al. pp 2751-291 or Kruschke Chapters pp 143–218. I
am relying more on Gelman et al.
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Introduction to Bayesian Computing

◮ Our major goal is to approximate the posterior distributions of
unknown parameters and use them to estimate parameters.

◮ The analytic computations are fine for simple problems,
◮ Beta-binomial for bounded counts
◮ Normal-normal for continuous variables
◮ Gamma-Poisson for (unbounded) counts
◮ Dirichelt-Multinomial for multicategory variables (i.e., a

categorical variable)
◮ Models in the exponential family with small number of

parameters

◮ For large number of parameters and more complex models
◮ Algebra of analytic solution becomes overwhelming
◮ Grid takes too much time.
◮ Too difficult for most applications.
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Steps in Modeling

Recall that the steps in an analysis:

1. Choose model for data (i.e., p(y |θ)) and model for parameters
(i.e., p(θ) and p(θ|y)).

2. Compute p(θ|y) or at least find a good approximation of it.

3. Model evaluation.
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Target Distribution: p(θ|y)

The distribution we want to simulate is the posterior, p(θ|y).
Let

◮ q(θ|y) be an un-normalized density that is easy to compute.

◮ p(θ|y) the target distribution

◮ The ratio

q(θ|y)
p(θ|y) = a constant that depends only y

◮ We will work with

p(θ|y) ∝ p(y |θ)p(θ)
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Avoiding Under and Over Flow Errors
◮ Numbers can become too small (underflow) or too large

(overflow) for computers to deal with. This leads to errors.
◮ Simple example: Note that logically exp(log(1000)) =

log(exp(1000)) = 1000; however, if you try them in R ...

exp(log(1000)) = 1000 but log(exp(1000)) = Inf

◮ By working with log densities we can work with densities we
only exponentiate at the very end (if even necessary).

◮ For example, the normal distribution,

p(y1, . . . , yn|θ, σ2) = (2πσ2)−n/2
n∏

i=1

exp

{
−1

2

(
yi − θ

σ

)2
}

log p(y1, . . . , yn|θ, σ2) = (−n/2) log(2πσ2) +
∑

i

{
−1

2

(
yi − θ

σ

)2
]
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Markov Chains

(quotes from Gelman et al.):

“. . . a Markov Chain is a sequence of of random variables
θ1, θ2, . . . , for which, for any t, the distribution of θt given all
previous θ’s depends only on the most recent value.”

“The key to the method’s success, however, is not the Markov
property but rather that the approximate distributions are
improved at each step in the simulation, in the sense of converging
to the target distribution.”

“The transition probability distributions must be constructed to
converge so that the Markov chain converges to a unique
stationary distribution that is the posterior distribution, p(θ|y).
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Example of Markov Chain
Run R function metroLogNorm(niter,y,current,tau,jump)

where

◮ niter = number of iterations

◮ y a random sample from a normal distribution

◮ current = starting value for algorithm

◮ tau = a guess at the variance of posterior for the mean

◮ jump = a value that is a standard deviation of “jumping”
distribution

Output:

◮ the values for each iteration

◮ figure of values by iteration (shows the random walk)

◮ histogram of values

If you use RStudio, you have to open up a plot window to “see” it
in action.
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Overview of Stochastic Methods & Algorithms

Methods

◮ Metropolis algorithm

◮ Gibbs Sampling

◮ Hamiltonian

Some Implementations in R

◮ Programming in base R

◮ jags

◮ rstan

Many useful tools are in the “coda” package and they save time
when assessing convergence.
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Metropolis Algorithm

Draw θpropose from J(θpropose |θcurrent)

❄

Compute r = min(1,
p(θpropose |y)
p(θcurrent |y) )

❄

If r = 1

Accept θpropose

✯

❄

Draw u from
Uniform(0,1)

If r < 1

✛

If r > u

If r < u
❄

Reject θpropose

❨
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Jumping Distribution

The jumping or “proposal” distribution

◮ Must be symmetric; that is, J(θa|θb) = J(θb|θa).
◮ The standard deviation of the jumping distribution impacts

how long it take chain to get to stationary point.

◮ The algorithm is fine for low dimensional problems (i.e., small
number of parameters).

◮ Uses the parameter estimated from the previous iteration. For
example, use θt−1 as the mean of the jumping distribution
during the tth iteration. In other words, its Markov process.

◮ Need to ensure that values θ are sampled all over where
possible values could be.
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p(θt|y) and Accept or Reject Proposed Value

Using Bayes Theorem:

r = min

(
1,

p(θt |y)
p(θt−1|y)

)

p(θt |y)
p(θt−1|y)

=
p(y |θt)p(θt)/p(y)

p(y |θt−1)p(θt−1)/p(y)
=

p(y |θt)p(θt)
p(y |θt−1)p(θt−1)

◮ Need to choose prior and likelihood.

◮ If θt is better than θt−1, then r ≥ 1.

◮ If θt is not as good at θt−1, we may still accept θt .

◮ Let u ∼ Uniform(0, 1), accept θt if r ≥ u.

◮ If r < u, then reject θt and set θt − θt−1.

C.J. Anderson (Illinois) MCMC Fall 2019 12.12/ 45



Overivew Bayesian computing Markov Chains Metropolis Example Practice Assessment Metropolis 2 Practice

Accept or Reject Proposed Value (another way)

◮ If p(θt |y) ≥ p(θt−1|y) the proposed values θt is “accepted”;
that is,

p(θt |y)
p(θt−1|y)

≥ 1

◮ If p(θt |y) < p(θt−1|y) the proposed values θt may still be
accepted with some probability that depends on the ratio and
a draw from the uniform distribution, u ∼ Uniform(0, 1); that
is,

If r > u → accept proposed θ and θt = proposed value

If r < u → reject proposed θ and θt = θt−1

◮ Repeat many, many times and resulting θ1,θ2,. . .,θlarge numer
is an approximation of the posterior density.
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Metropolis Algorithm

◮ Once you have θ1, θ2, . . . , θlarge numer you can

◮ Graph in various ways
◮ Compute statistics: mean, median, mode, standard deviation,

intervals, etc.
◮ Compute functions of statistics.
◮ Can easily do integration via summation; that is,

h(θ) =

∫
∞

−∞

h(θ)p(θ)d(θ) ≈ 1

S

S∑

i=1

h(θs)

◮ BUT
◮ Works fine for small problems (e.g., small number of

parameters).
◮ Needs some tuning for optimal efficiency.
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Anorexia Data
Sample statistics:

ȳ = 2.7638, s2 = 63.7378, n = 72

Analytic results where µo = 0, τ2o = 1000, and σ = 0

θ57 = µ57 = 2.683, τ257 = 1.123

Analytic results with extra 15 and κ0 = 1

θn = 2.761, τ2n = 0.889

Metropolis algorithm setting σ = sd(data), start=0, τ2o = 0.1,
jump standard deviation = 0.3, and 2,000 iterations:

θ = 2.7684, sd(θ) = 0.1026
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Tuning the Algorithm for Anorexia Data

Tuning was very important with these data.

I different inputs:

◮ I tried different starting values for the mean to ensure that
chains were stable.

◮ I wanted and acceptance rate of about 45% (for more
complex aim for 23%, see Gelman for justification).

◮ I tried different jump standard deviations to get one that
works well –acceptance rate ≈ 40%..

◮ With good input, need fewer iterations.

◮ I settled on jump standard deviation = 1.75 and 5,000
iterations (more than we need?).
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Tuning Picture
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Results for Anorexia Data

◮ 4 chains with starting values equal to ȳ , 0, −4, 4
◮ τ =

√
s2/n = standard error of mean

◮ jump std = 1.75

◮ 5000 iterations and saved 4000 × 4 for posterior.

acceptance Sample Statistics of Posterior
rate mean median 25% 95%

chain1 41.7% 2.762 2.760 2.306 3.214
chain2 40.7% 2.740 2.744 2.296 3.21
chain3 40.7% 2.788 2.782 2.322 3.25
chain4 41.3% 2.754 2.782 2.322 3.195
grand 2.754 2.760 2.305 3.198
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Anorexia Data: Early iterations of 4 chains
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Anorexia Data: Trace Plots of 4 chains
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Anorexia Data: Auto-Correlations
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Anorexia Data: Auto-Correlations for Posterior
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Anorexia Data: Density Estimates
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Anorexia Data: Posterior Distribution & Density

Posterior Distribution
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Getting What you Paid for
Use the metroLogNorm function to estimate the mean for fixed
variance:
metroLogNorm(niter,y,current,tau,jump) where
◮ niter = number of iterations
◮ y is data (i.e., it needs to be named “y”)
◮ current = prior value of mean
◮ tau = prior variance of the mean
◮ jump = a value that is a standard deviation of “jumping”

distribution

Output:
◮ the values for each iteration
◮ figure of values by iteration (shows the random walk)
◮ histogram of values

If you use RStudio, you have to open up a plot window to “see” it
in action.
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Assessing Convergence using CODA

◮ Trace Plots: parameter value × iteration. These are useful for
assessing whether chain have stabilized and see where could
set “burn in” or “warm up”.

◮ Geweke Statistic: Test whether the mean of first part of chain
(first 10% of θs) equals the mean of the later part of the
chain (last 50%). This is based on the assumption that the
first and last parts of the chain are (asymptotically)
independent, such that difference between the means should
be 0. The statistics is N(0, 1).

◮ Auto-correlations: plot auto-correlations × iterations. These
show the dependencies between candidate θs in a chain, at
convergence they should be 0.
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Assessing Convergence (continued)

◮ Effective Sample Size: Even if you have a large number of
values in the simulated posterior distribution, due to the
dependency between θs we need a correction to the sample
size:

ESS =
mn

1 + 2
∑

t ACFt
,

where ACFt is the autocorrelation of sequence at lag t, m is 2
times number of chains and n is length of chain.

◮ Trace plots of multiple chains: Determine whether the chains
are mixing well or there is an “orphan”. Will see wether
starting values have impact on results.
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Assessing Convergence (continued)
◮ Gelman-Rubin diagnostic or the “potential scale reductions” or

the “shrink factor”. The between chain variance relative to the
within chain variance should be about the same if all chains
have settled. A value > 1.1 is “cause for concern”.
◮ After deleting warm-ups, split each of the chains into 2, let n =

length of split chain, and m = number of split chains.
◮ Compute θ̄

.j =
1
n

∑n

i=1 θij , θ̄
..

= (1/m)
∑m

j=1 θ̄.j ,

B =
n

m − 1

m∑

j=1

(θ̄
.j − θ̄

..

)2

W =
1

m

m∑

j=1

s2j , where s2j =
1

n − 1
(θij − θ̄j)

2

◮ v̂ar(θ|y) is the marginal posterior variance of estimand of θ,

PSRF = Rhat = R̂ =

√
n−1
n

W + 1
n
B

W
=

√
v̂ar(θ|y)

W
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Assessing Convergence (continued)

◮ Plots of Gelman-Rubin statistics × iterations.

◮ Density Estimation: Plot of multiple chains as densities, there
should basically be the same.

◮ High density intervals for multiple chains should all be very
similar.

◮ Descriptive statistics from different simulated distributions for
different chains should be similar in value. Note that the
Standard Error of Mean can be extended to MCMC using

MCSE = sdθs/
√
ESS
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Metropolis Algorithm for Two Parameters: µ and σ2

◮ Works pretty much the same as when just estimating µ for
fixed σ, but it is more transparent in terms of the parts.

◮ Get the file “metropolis log with examples.tex” from the
course web-site (there are example simulations after
metroLogNorm2 function).

◮ The following slides are the results of simulations and
R-commands to produce the plots and statistics described in
the pervious section on convergence.
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How to Use metroNorm2

First we need some data:
mu = 2

std = 1

N = 20

y <- rnorm(N,mean=mu,sd=std)

Set the starting values for µ and σ and run the function:
start ← c(0.00,1.0)

chain1 ← metroNorm2(start,5000)
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Random Walk Through the Parameter Space
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More Random Walks Through the Parameter Space
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Longest Random Walk Through the Parameter Space
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Individual Trace Plots
traceplot(chain1,smooth=F,type=‘l’,xlab=’Iterations’,ylab=Parameter Values’)
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Plots of Auto-Correlations
autocorr.plot(chain1,iterations,auto.layout=TRUE)
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Geweke & ESS Statistics

geweke.diag(chain1,frac1=0.1,frac2=0.5)

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5

var1 var2
-0.5678 1.5574

effectiveSize(chain1)

var1 var2
375.7252 524.1868
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How to Improve Simulation
Although this simulation is pretty good, ways that could possibly
improve simulation include

◮ Run the algorithm for more iterations (The first time I ran for
1,000 but increased to 5,000)

◮ Tune of jump std.

◮ Use more appropriate p(y |θ) and p(θ).

◮ Thinning.

◮ Larger sample size (data, more ys...only have n = 20)

◮ Run multiple chains to ensure all parts of the parameter space
are visited and that chains are mixing well. Chains should
become stable.

◮ Drop the first 1,000 or first half of the chains before assessing
convergence and estimating parameters.
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Iterations=20,000, chain=4
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Shrink Factor
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Autocorrelations (one chain)
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Effective Sample Size

var1 var2
5585.972 6880.365
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summary(all.chains)

Sample statistics:
ȳ = 1.7990, s2 = 0.9953,

√
s2/n = .2231.

Bayesian estimates:
Iterations = 1:20001
Thinning interval = 1
Number of chains = 4
Sample size per chain = 20001

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE

1.797 0.2439 0.0008623 0.003275

1.067 0.1968 0.0006957 0.002440
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summary(all.chains)

Sample statistics:
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.440 1.135 1.638 1.799 2.209 4.304

Bayesian estimates:

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

1.3163 1.6394 1.797 1.953 2.280

0.7684 0.9322 1.040 1.172 1.511
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Getting What you Paid for

◮ Estimate the mean and variance of state average total SAT
scores.

◮ Run multiple chains

◮ Combine chains (mcmc objects) use command, for example,
all.chains ← mcmc.list(chain1,chain2,chain3,chain4)

◮ Assess convergence
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