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Categorical Data Analysis with

a Psychometric Twist

Carolyn J. Anderson

INTRODUCTION

Variables measured in psychological and
social science research are often discrete, such
as the choice between two objects in a paired
comparison experiment, the response option
selected on a survey item, the correct answer
on a test question, career choice, gender,
the highest degree earned, and many others.
The focus of this chapter is on models for
discrete data such as those often collected in
psychological and educational research. The
statistical models presented in this chapter fall
within the class of generalized linear models
(GLM). The GLM framework provides a
unification of numerous models proposed
in statistics, medicine, economics, sociology,
and psychology.

Many statistical models for categorical
data were developed outside the realm of
psychology; however, many psychometric
models can be fit to data as a GLM. Described
in this chapter are special cases of GLMs
that correspond to particular psychometric
models. These include logistic and probit
regression models for dichotomous response
variables, conditional multinomial logistic
regression models for polytomous responses,

and log-linear (Poisson regression) models for
counts. In psychometric models of behavoir,
observations are often assumed to be due
to individuals’ values on a latent trait. Even
though the categories of a variable may have
no inherent or natural ordering, they may be
ordered with respect to some underlying or
latent trait, such as ability, preference, utility,
knowledge, attitude, or prestige.

An advantage of using the GLM framework
to fit various psychometric models is that
many software packages are available for
fitting GLMs to data, including SAS (SAS
Institute, 2003), S-Plus (Insightful Corpora-
tion, 2007), R (R Core Team, 2006), and
others. SAS, R, and �EM (Vermunt, 1997)
input files for examples reported in this
chapter are available at http://faculty.ed.uiuc.
edu/cja/homepage/software index.html.

Before delving into GLM theory, mea-
sures of association will be discussed, an
understanding of which is key to inter-
preting model parameters that represent
dependency between variables. After an
introduction to GLMs, sections on logis-
tic and Poisson regression models provide
illustrations of basic modeling procedures
using data common in psychological and
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educational research. After this foundational
material, a general model for values on
a latent continuum is presented and is
used to describe latent variable models for
paired comparisons (i.e., Thurstone’s model
of comparative judgment and the Bradely–
Terry–Luce model), a multinomial discrete
choice model (i.e., McFadden’s model), and
item response models (i.e., the Rasch and
two-parameter logistic models). All of these
psychometric models can be formulated as
special cases of GLMs.

MEASURES OF ASSOCIATION

Many measures of association for categorical
data exist, including ones for ordinal and
nominal variables, dichotomous and multicat-
egory variables, local and global dependency,
and symmetric and asymmetric measures
(Altham, 1970; Agresti, 1980; Dale, 1986;
Edwardes and Baltzan, 2000; Goodman and
Kruskal, 1979). Only the two most common
measures of association are discussed here:
odds ratios and the correlation coefficient.

For illustration, we use the data in
Table 14.1, which consists of a cross-
classification of two vocabulary items, A and
C, from the 2004 General Social Survey
(GSS) (Davis, Smith and Marsdsen, 2004).
There are ten vocabulary items on the GSS,
which are a sub-set of a test originally devel-
oped by Thorndike and Lorge in the 1940’s
for use on Gallup surveys. The actual items
are not available, “to minimize the admittedly
small possibility that some form of publicity
would affect the public’s knowledge of the
words…” (Appendix D, page 2028). On each

Table 14.1 Cross-classification of
vocabulary items A and C from the 2004
General Social Survey (Davis, Smith, and
Marsdsen, 2004)

Item C

Item A Correct Incorrect Total

Correct 259 702 961
Incorrect 32 162 194

Total 291 864 1155

item, a target word is given and the respondent
selects the word from a set of five other words
that is closest in meaning to the target word.
The two items are statistically related (i.e.,
the Pearson chi-square test of independence
yields X2 = 9.36, df = 1, p < .01).

Odds ratio

The odds ratio is a symmetric measure for 2×2
tables. The odds ratio equals the ratio of two
odds and an odds is the ratio of two probabili-
ties. For example, the estimate of the probabil-
ity that an individual answers item A correctly
given a correct answer to C equals the
proportion 259/291 = .89, and the estimate
of the probability of answering A incorrectly
given a correct answer to C equals 32/291 =
.11. The ratio of these two estimated condi-
tional probabilities equals the odds that an
individual correctly responds to item A given
a correct answer to item C, which equals
(259/291)/(32/291) = 259/32 = 8.09.
Likewise, the odds that an individual correctly
answers item A given an incorrect answer to
item C equals 702/162 = 4.33. Item A was
a relatively easy item (i.e., 83.2% of the n =
1155 respondents answered it correctly), so it
is not surprising that the two odds of a correct
response to item A are both greater than 1.

The odds ratio in our example equals
8.09/4.33 = 1.87, which means that the
odds of a correct response to item A given
a correct answer to item C is 1.87 times the
odds of a correct answer to item A given an
incorrect answer to item C. Since odds ratios
are symmetric, our odds ratio can also be
interpreted as the odds of a correct response
to item C given a correct answer to item A
is 1.87 times the odds of a correct answer to
C given an incorrect response to A. A correct
answer to item A is more likely when an
individual is also correct on item C; however,
the probability is not 1.87 times larger. Odds
ratios deal with how many times one odds is
relative to another.

For generality, let nij equal the frequency
in the (i, j) cell of a cross-classification of two
variables. The estimate of a population odds
ratio γ̂ii′,jj′ is a ‘cross-product ratio’ of a 2 × 2
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table; that is,

γ̂ii′,jj′ = nij/ni′j
nij′/ni′j′

= nijni′j′

ni′jnij′
, (1)

where i and i′ are distinct categories of one
variable, and j and j′ are distinct categories
of the other variable. Note that the odds
ratio does not depend on the margins of the
table (i.e, the univariate marginal distributions
of the variables), but only depends on the
values within cells of the table (i.e., the joint
distribution of the two variables).

A single odds ratio characterizes the asso-
ciation between two dichotomous variables;
however, for larger cross-classifications, a
set of odds ratios is needed to completely
characterize the relationship between two cat-
egorical variables. For example, consider the
cross-classification of career choice by gender
of N = 600 high-school seniors from the
High School and Beyond data set (Tatsuoko
and Lohnes, 1988) given in Table 14.2. If
I and J equal the number of rows and
columns respectively, the minimum number
of odds ratios needed equals (I − 1)(J − 1)
(i.e., the degrees of freedom for testing the
independence in a two–way table). Given an
appropriate set of odds ratios, all other odds
ratios can be found from these. For example,
using the data from Table 14.2, the odds ratio
of girls (versus boys) choosing clerical versus
craftsman equals 48(36)/(2(3)) = 288.00, the
odds ratio for craftsman versus farmer equals
3(9)/(36(2)) = .375, and the odds ratio for
clerical versus farmer equals the product of
these two, 288.00(.375) = 108.

If there is a natural reference or control
category for both variables, a basic set of odds
ratios that completely captures the association
in an I × J table is set where all odds ratios
are formed using the reference cell. When the
variables are ordinal, a logical basic set of
odds ratios are those formed using adjacent
categories.

Correlation

The correlation is the Pearson product
moment correlation between the two variables

Table 14.2 Cross-classification of intended
career by gender of 600 seniors in the High
School and Beyond data set (Tatsuoko and
Lohnes, 1988). The row scores are from
correspondence analysis.

Gender

Career Row Boy Girl Total
choice scores 1 0

Clerical (−0.83) 2 48 50
Craftsman (0.94) 36 3 39
Farmer (0.73) 9 2 11
Homemaker (−0.85) 1 32 33
Laborer (0.59) 9 3 12
Manager (0.31) 14 9 23
Military (0.67) 15 4 19
Operative (0.51) 17 7 24
Professional 1 (−0.13) 63 98 161
Professional 2 (0.07) 46 48 94
Proprietor (0.18) 12 10 22
Protective (1.09) 9 0 9
Sales (−0.24) 4 8 12
School (−0.56) 3 14 17
Service (−0.78) 2 27 29
Technical (0.59) 27 9 36
Not working (−0.02) 4 5 9

Total 273 327 600

where scores have been assigned to the
categories. Suppose that we assigned scores
or numerical values to categories of the rows
and columns, denoted respectively as ui and
vj. The correlation for an I × J table equals

r =
∑I

i=1
∑J

j=1nij(ui − ū)(vj − v̄)√∑
i=1ni+(ui − ū)2

√∑J
j=1n+j(vj − v̄)2

,

(2)

where
∑

i nij = n+j,
∑

j nij = ni+, ū =∑
i ni+ui, and v̄ = ∑

j n+jvj. For 2 × 2 tables,
where u1 = v1 = 1 and u2 = v2 = 0, the
correlation simplifies to the “phi coefficient”

r = n11n22 − n12n21√
n1+n+1n2+n+2

. (3)

Returning to our vocabulary example

r = (
259(162) − (702)(32)big)

× (
(259 + 702)(259 + 32)

× (162 + 702)(162 + 32)
)−1/2

= 0.9
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which subjectively seems like a small value.
The correlation depends both on values in a
cross-classification (i.e., joint distribution) as
well as margins of a table (i.e., the univariate
distributions). As a consequence, |r| can only
equal 1 if the margins are equal.

In 2 × 2 tables, the choice of scores is
arbitrary (i.e., the correlation is invariant with
respect to linear transformations); however,
the choice of category scores matters for larger
tables. For Table 14.2, there is no natural
ordering of the careers so choosing scores for
the rows would appear to make computing
r problematic. An upper bound for the
maximum possible correlation is max(|r|) ≤√

X2/n++, where X2 equals the Pearson chi-
square test statistic for independence. Equality
holds when the number of rows or columns
equals 2, which is the case for both of
our examples. For Table 14.1 where X2 =
9.36, r = √

9.3638/1155 = .09, and for
Table 14.2 where X2 = 170.9121, r =√

170.9121/600 = .53. Correctly interpret-
ing the latter correlation requires knowing
the scores (implicitly) used to compute the
correlation. The scores used for the career
choice by gender correlation, which are given
in Table 14.2, were found by performing a
simple correspondence analysis. The largest
possible correlation is always given by the
category scores of the first component from
correspondence analysis. The larger scores in
our example are associated with traditionally
male careers (e.g., protective, laborer), lower
scores with traditionally female careers (e.g.,
homemaker, clerical), and those near 0 are
more gender neutral (e.g., professional).

Correlation or odds ratios?

Using correlations for categorical variables
presumes an underlying continuum where
the observed variables have been measured
discretely. This was the position taken by
Karl Pearson, and he further assumed that
the underlying distribution of variables was
bivariate normal. Yule, on the other hand,
took the position that some variables are
clearly nominal (e.g., death due to smallpox)

and that association between categorical
variables should be measured by odds ratios
or functions of them. The different views of
Pearson and Yule lead to two distinct lines of
model development for discrete data, as well
as to very contentious and nasty exchanges
(see Agresti, 2002; 2007).

For most of the statistical models presented
in this chapter, odds ratios are functions of
model parameters and do not require assum-
ing underlying continua. The psychometric
models discussed in this chapter assume an
underlying continuum, which suggests that
correlations may be more useful as a measure
of association; however, this is not the case.
To add to the irony, the model for data implied
by underlying bivariate normality where
variables are measured discretely is a model
with association parameters that are most
naturally interpreted in terms of odds ratios;
however, correlations are functionally related
to the association parameters (Goodman,
1981).1

GENERALIZED LINEAR MODELS

Generalized linear models (GLM) were intro-
duced by Nelder and Wedderburn (1972)
and provide a unification of a wide class of
regression models. In the GLM framework,
the distribution of the response variable
need not be normal but any member of the
exponential dispersion family of distributions.
Furthermore, the relationship between the
mean of the response variable and a linear
function of explanatory or predictor vari-
ables can be nonlinear. A GLM consists of
three components: a random component, a
systematic component, and a link function.
For more detailed descriptions of GLMs see
Dobson (1990), Fahrmeir and Tutz (2001),
and Lindsey (1997), McCullagh and Nelder
(1983), and specifically for categorical data
see Agresti (2002; 2007).

The random component

The random component of a model is specified
by identifying the response variable and
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assuming a distribution for it. The distribution
must be in the exponential dispersion family
of distributions, which is very general and
includes the normal, gamma, beta and others.
The two distributions used in this chapter are
the Poisson and binomial.

Dichotomous variables are very common
response variables. For example, an individ-
ual may correctly answer item A on the GSS
vocabulary test or a person may choose option
A over option B when presented a pair of
options. The number of times that an event
occurs, y, out of n possible independent cases
or trials is a bounded count (i.e., y can be at
most n). For dichotomous variables we will
use the binomial distribution

P(Yi = y) =
(

n
y

)
π

y
i (1 − πi)

n−y, (4)

where P(Yi = y) is the probability that
Yi = y; y = 0, 1, . . . , n; n is the number of
independent trials or cases for which the event
could have occurred; and πi is the probability
that the event occurred on a specific trial.
The index i could represent an individual.
For example, when n = 1, Yi would equal
1 if person i correctly answers item A and
0 otherwise. Alternatively, when n > 1, Yi

could equal the number of individuals who
answer item A correctly out of n individuals
who gave an answer to item A. The index i
could also represent a particular situation. For
example, if object pair A and B was presented
to n individuals, Yi could equal the number of
times object A is chosen.

The mean of the binomial distribution is
μi = nπi, and the variance is nπi(1 −
πi), which depends on the mean. In GLM
terminology, the logarithm of the odds
log(πi/(1 − πi)) is the “natural parameter.”
Interest is typically focused on πi and models
for πi are specified.

The number of trials for binomial random
variables can be as small as 1, in which case
the distribution of Y is Bernoulli, but in others,
n may be so large that counts are virtually
unbounded. When counts are not bounded,
the Poisson distribution is often a good model
for the distribution of response variables.

The Poisson distribution is

P(Yi = y) = μye−μi

y! , (5)

where values of the response are nonnegative
integers (i.e., y = 0, 1, 2, . . .), and μi is
the mean of the distribution. The variance of
a Poisson distribution equals the mean. The
natural parameter for the Poisson distribution
is log(μi).

The systematic component

The systematic component of a GLM consists
of a linear function of explanatory variables

ηi = β1x1i + β2x2i + . . .+ βK xKi, (6)

where xki is the value on predictor or explana-
tory variable k for individual or case i, and the
βks are the unknown regression coefficients,
which are considered fixed in the population.
Although the systematic component must be
linear in the parameters, it can model non-
linear patterns. For example x3i = x2

1i or
x3i = x1ix2i. There are no restrictions on
the nature of the explanatory variables. For
example, they could be dummy or effect codes
for qualitative variables, as well as numerical
values for metric variables. In all except one
class of models discussed in this chapter,
linear predictors suffice. The exception is for
the two parameter logistic model for item
response data.

When analyzing counts in cross-
classifications of categorical variables,
tables sometimes have structural zeros.
These are cells where the probability of an
observation is zero. For example, in a paired
comparison experiment, individuals are never
asked to compare an object with itself. In the
cross-classification of the number of times
objects are chosen (rows) versus objects not
chosen (columns), there are no values along
the diagonal (e.g., see Table 14.5). Such cells
can be handled by putting any number in the
empty cells and defining an indicator variable
for each of these cells (i.e., x = 1 for the
empty cell and x = 0 for all other cells).
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When the indicator variable is included in the
linear predictor, one parameter is estimated
for the cell, which causes the fitted value to
equal the value input for the empty cell. This
has the effect of essentially removing the
cell from the analysis. This approach is used
most often to fit models that exclude diagonal
elements from square tables or to deal
with anomalous data points (Agresti, 2002;
2007; Fienberg, 1985). This methodology is
illustrated in the section ‘Poisson regression
models for counts’ and is used implicitly in
the section ‘Discrete choice/random utility
models’.

The link function

The third component of a GLM is the link
function g(·), which connects the random
component E(Yi) = μi with the systematic
component ηi; that is

g(μi) = ηi = β1x1i + β2x2i + . . .+ βK xKi.

(7)

An important consideration when choosing
the link function is to choose one that ensures
that fitted (predicted) values stay within the
range of possible values for the response

variable. For example, probabilities must be
in the range of 0 to 1 and counts must be non-
negative; however, the linear predictor could
take on values outside the permissible range
for the outcome variable. For count variables,
the natural logarithm, log(y), keeps counts
non-negative and is also the “canonical”
link function. Canonical link functions are
statistically advantageous, as seen later in this
chapter.

For dichotomous variables, common
choices of link functions for probabilities
are the inverses of cumulative distribution
functions of continuous variables, which can
take on values from 0 to 1. A cumulative
distribution function equals P(Y ≤ y) = F(y),
and using the inverse as a link function
gives us

F−1(πi) = ηi. (8)

Three common distributions used as link
functions are plotted in Figure 14.1: The
standard normal, logistic, and extreme value
or Gumbel distributions. For the normal
and logistic distributions, probabilities are
symmetric around ηi = 0. Specifically, for
ηi ≥ 0, the rate at which probabilities increase
toward 1 as a function of ηi equals the rate at
which probabilities decrease toward 0 when

Figure 14.1 Cumulative distribution functions that are often used as link functions: the
standard normal distribution, the logistic with dispersion parameter equal to .625, and the
extreme value distribution.
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ηi ≤ 0. For the extreme value distribution,
the rate of increase is not the same as the rate
of decrease.

The logit link results from using the logistic
distribution, which is the log of the odds

logit(πi) = log

(
πi

1 − πi

)
. (9)

The probit link results from using the standard
normal distribution; that is, �−1(πi) where
�−1 is the inverse of the cumulative standard
normal. As can be seen from Figure 14.1,
the normal and the logistic are very similar2.
When using the extreme value distribution,
the link is log(− log(πi)) and is known as the
“complementary log-log link.”

LOGISTIC REGRESSION FOR
DICHOTOMOUS VARIABLES

Basic modeling of dichotomous data is illus-
trated in this section including discussions
of model evaluation, statistical inference,
and interpretation. Much this also pertains
to Poisson regression models, which are
illustrated later.

The model components

In this and the next section, the responses
to item A from the 2004 vocabulary section
of the General Social Survey (Davis, Smith,
and Marsdsen, 2004)) are used for illustration.
Since the answers to item A are dichotomous,
the response variable was coded as

Yi =
{

1 a correct answer
0 an incorrect answer.

We assume that Y follows a binomial distri-
bution and use the canonical link function, the
logit.

Assuming that there is a latent variable
“vocabulary knowledge,” which underlies the
responses to item A, this latent variable should
also influence the responses to the other
vocabulary items. In test development, item
response functions are often studied by fitting

logistic regression models to a target item
using a “rest-score” as a predictor variable.
A rest-score is the sum score of all the
items except for the one being treated as the
response variable (Junker and Sijtsma, 2000).
Other variables can be included to ascertain
whether responses differ due to gender, race,
or other variables (Swaminathan and Rogers,
1990). For the systematic component in our
example, we consider the respondents’ rest-
score on four other vocabulary items (i.e.,
items C, D, E, and F) and the highest degree
earned by the respondent. We expect that
earning a higher degree is indicative of a
higher level of vocabulary knowledge. After
some exploratory analyses, highest degree
was coded into three categories: no degree
(less than a 6th-grade education), elementary-
school degree (completed at least 6th grade
but not high school), and high-school degree
(completed at least 12th grade).

Putting the three components together
yields

log

(
P(Yi = 1|restscorei, degreei)

P(Yi = 0|restscorei, degreei)

)
= β0 + β1(restscorei)

+ β2(hsi) + β3(primaryi). (10)

where P(Yi = 1|restscorei, degreei) equals
the probability that respondent i correctly
answered item A given that their rest-
score equals “restscorei,” and highest degree
earned, “degreei” is coded as

hsi =
{

1 High school
0 otherwise

primaryi =
{

1 Primary
0 otherwise

.

Implicitly, the regression coefficient for those
with no degree equals 0.

Model (10) was fit to the data using
maximum likelihood estimation, which is
standard for GLMs. The observed number of
correct and incorrect responses are reported
in Table 14.3 along with the observed
proportions. The fitted or predicted values in
this table are from a slightly revised version
of Model (10) described later.



[10:09 20/4/2009 5283-Millsap-Ch14.tex] Job No: 5283 Millsap: The SAGE Handbook of Quantitative Methods in Psychology Page: 318 311–336

318 DATA ANALYSIS

Table 14.3 Observed and fitted values for logistic regression model of correct and incorrect
answers to item A from the vocabulary section of the 2004 GSS, where the fitted values are
from equation (17).

Number Predicted Number Predicted Observed Fitted
Rest- Highest correct correct incorrect incorrect proportion probability
score degree yi ŷi yi ŷi pi π̂i

0 0 2 3.16 6 4.84 0.25 0.40
1 0 11 11.83 11 10.17 0.50 0.54
2 0 25 22.24 8 10.76 0.76 0.67
3 0 29 29.87 9 8.13 0.76 0.77
4 0 4 3.47 0 0.53 1.00 0.87
0 1 5 6.32 8 6.68 0.38 0.49
1 1 19 17.56 9 10.44 0.68 0.63
2 1 79 75.69 22 25.31 0.78 0.75
3 1 276 281.13 58 52.87 0.83 0.84
4 1 94 93.15 9 9.86 0.91 0.90
0 2 5 4.05 2 2.95 0.71 0.58
1 2 3 4.96 4 2.04 0.43 0.71
2 2 45 41.43 6 9.57 0.88 0.81
3 2 227 230.09 33 29.91 0.87 0.88
4 2 137 136.05 9 9.95 0.94 0.93

Table 14.4 Estimated parameters, standard errors, and test statistics for logistic regression
models where word A is the response variable. The values on the left are those when highest
degree earned was treated nominally and those on the right when highest degree earned was
treated as a metric variable.

Degree as nominal Degree as metric

Effect Parameter df Estimate s.e. Estimated s.e.

Intercept β0 1 −0.4071 0.2739 −0.4242 0.2474
Rest-score β1 1 0.5767 0.0882 0.5753 0.0876
Highest degree

High school or more β2 1 0.7266 0.2748 0.3694 0.1306
Primary β3 1 0.3382 0.2505
None 0 0.0000 0.0000

Interpretation

The parameter estimates and corresponding
standard errors for (10) are given on the left
side of Table 14.4. The parameters are most
naturally interpreted in terms of odds ratios.
For our model, the odds of answering item A
correctly for a fixed value of highest degree
completed and two levels of rest-score, say
x + 1 and x, equal

P(Yi = 1|x + 1, degreei)

P(Yi = 0|x + 1, degreei)

= exp [β0 + β1(x + 1)

+ β2(hsi) + β3(primaryi)
]

(11)

P(Yi = 1|x, degreei)

P(Yi = 0|x, degreei)

= exp [β0 + β1(x)

+ β2(hsi) + β3(primaryi)
]
, (12)

respectively. The ratio of the odds (11) and
(12) is an odds ratio, and equals exp(β1).
In our example, exp(β̂1) = exp(0.5753) =
1.78; that is, for a given degree, the odds of
answering item A correctly is 1.78 times larger
than the odds when the rest-score is one unit
smaller.

With respect to the nominal variable, the
odds ratios for highest degree earned are
found by taking the ratios of pairs of the
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following odds:

P(Yi = 1|restscorei, high school)

P(Yi = 0|restscorei, high school)

= exp [β0 + β1(restscorei) + β2] (13)

P(Yi = 1|restscorei, primary)

P(Yi = 0|restscorei, primary)

= exp [β0 + β1(restscorei) + β3] (14)

P(Yi = 1|restscorei, none)

P(Yi = 0|restscorei, none)

= exp [β0 + β1(restscorei)] . (15)

Using the parameter estimates on the left-side
of Table 14.4, the odds ratio for answering
A correctly when completing primary school
versus no degree equals the ratio of (14) and
(15), which is exp(β̂3) = exp(.3382) = 1.40.
The odds ratio for completing high school
relative to elementary school equals the ratio
of (13) and (14), which is exp(β̂2 − β̂3) =
exp(0.3384) = 1.46.

The near equality between of the estimated
odds ratio for elementary versus none and
that for high school versus elementary (i.e.,
1.40 and 1.46) suggest that the odds ratios
may be equal for adjacent levels of highest
degree earned. Restrictions can be placed on
the parameters to make the two odds ratios
equal; that is, exp(β2 − β3) = exp(β3) or
equivalently exp(β2) = exp(2β3). In other
words, rather that treating highest degree
earned as a nominal variable, we could treat it
as a metric variable and assign equally spaced
scores to the categories as follows

degreei =
⎧⎨
⎩

0 no degree
1 elementary school degree.
2 high school degree

(16)

Using degree as a metric variable yields

log

(
P(Yi = 1|restscorei, degreei)

P(Yi = 0|restscorei, degreei)

)
= β0 + β1(restscorei) + β2(degreei).

(17)

The parameter estimates for (17) are reported
on the right side of Table 14.4, and the fitted
counts and probabilities are in Table 14.3.
The fitted odds ratio of correctly answering
item A for adjacent categories of degree
equals exp(0.3694) = 1.45. Later we
will formally test whether imposing the
restriction on the parameters for degree in (10)
significantly reduced the goodness-of-fit of
the model.

Probabilities are often easier to understand
than odds ratios. Logit models can be re-
written as models for probabilities, because
there is a one-to-one relationship between
odds and probabilities

P(Yi = 1|ηi)/(1 − P(Yi = 1|ηi)) = exp(ηi)

P(Yi = 1|ηi) = exp(ηi)

1 + exp(ηi)
. (18)

For our example, the model for the probabili-
ties equals

P(Yi =1|restscorei,degreei)

= exp
[
β0 +β1(restscorei)+β2(degreei)

]
1+exp

[
β0 +β1(restscorei)+β2(degreei)

] .
(19)

Using the estimated parameters, the fitted
probabilities are plotted in Figure 14.2 as a
function of the rest-scores with a separate
curve for each degree. Since the parameter
for rest-score is positive, β̂1 = 0.58, the
curves monotonically increase. The effect of
degree can be seen by the horizonal shift
of the curves. Since there is no interaction
between rest-score and highest degree earned,
the curves are parallel (i.e., in Figure 14.2,
line segments a = c and b = d). Since
equally spaced scores were used for degree,
the difference between the curves for high-
school and elementary is the same as the
difference between those for elementary and
none (i.e., in Figure 14.2, line segments a = b
and c = d).
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Figure 14.2 Fitted probabilities from (17) of responding correctly to item A of the 2004 GSS
vocabulary test as a function of rest-score with a separate curve for each degree. The
horizontal dashed line segments show characteristics of a model with no interaction and
equally spaced scores for a discrete explanatory variable.

Model evaluation

Model goodness-of-fit can be assessed by
computing either Pearson’s χ2 or a likelihood
ratio statistics G2, which equal

X2 =
∑

i

(yi − ŷi)2

ŷi
(20)

and

G2 = 2
∑

i

yi ln(yi/ŷi), (21)

where yi and ŷi are the observed and fitted
counts, and i indexes all possible cells
in a cross-classification of the explanatory
variables and the response variable. For the
two models fit in the previous section, X2 =
10.02 and G2 = 10.56 for model (10), and
X2 = 10.01 and G2 = 10.58 for model (17).

The sampling distributions of X2 and G2 are
approximately chi-square provided that the
counts in the cells are large (i.e., most yi ≥ 5)
and that the table size is fixed (i.e., adding
more observations does not increase the
number cells in the cross-classification of the
response and explanatory variables). These
conditions are reasonable for this example.

The degrees of freedom for the model equal

df = (number of data points) − (number of

non-redundant parameters)

= (number of logits)

− (number of unique parameters).
(22)

In model (10), there are 15 logits (i.e., the
number of rows in Table 14.3) and four
parameters (i.e., β0, β1, β2 and β3), which
gives us df = 15 − 4 = 11. When comparing
X2 = 10.02 and G2 = 10.56 to a chi-square
distribution with 11 degrees of freedom, we
obtain p-values of .44 and .48, respectively.
For Model (17), which has one less parameter
and df = 12, comparing X2 = 10.01 and
G2 = 10.58 with a chi-square distribution
with 12 degrees of freedom gives us p-values
of .62 and .57, respectively. Both models fit
the data well.

Models may be poor representations of
data because the random component, the
link function, or the linear predictor are not
good choices for the data. To further assess
model goodness-of-fit, additional and alter-
native statistics can be computed, including
the Hosmer–Lemshow statistic, information
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criteria for comparing models (e.g., AIC,
BIC), conditional likelihood-ratio statistics,
grouping data, and receiver operating char-
acteristic curves. In addition to global fit
statistics, standardized residuals and various
influence diagnostics should be examined. For
these and other methods see Agresti (2002;
2007) or Hosmer–Lemeshow (2000). Possible
misclassification on the response variable can
be investigated by using range-of-influence
statistics (Fay, 2002).

Statistical inference for parameters

Before interpreting the parameters, their
significance should be assessed. Both Wald
and likelihood ratio statistics can used for
hypothesis tests of the parameters, such as
Ho : β = 0. The fact that maximum likelihood
estimates of parameters are approximately
normal (i.e., β̂ ≈ N (β, σ 2

β )) is used in
Wald tests and confidence intervals. The Wald
statistic for Ho : β = 0 versus Ha : β �= 0 is

Wald =
(
β̂

(se)

)2

, (23)

where (se) is the asymptotic standard error of
β̂. For example, the Wald statistics for testing
rest-score is (0.5767/0.0882)2 = 42.75 with
df = 1 and p < .01. A 95% confidence
interval for the parameters equals:

β̂ ± z(1−α)/2(se) = 0.5767 ± 1.96(0.0882)

−→ (0.40, 0.75)

and the 95% confidence interval for the odds
ratio is

(exp(β̂ − z(1−α)/2(se)),

exp(β̂ + z(1−α)/2(se))) −→ (1.49, 2.12).

Wald tests can be constructed to test a
set of coefficients (e.g., for highest degree3,
Ho : β2 = β3 = 0); however, we will use the
slightly more powerful, conditional likelihood
ratio test. The conditional likelihood ratio LR
test statistic compares the maximum of the
likelihood for two models, one of which is

nested within the other. For testing Ho : β = 0,
where β is a vector of parameters, the nested
model does not include β. The LR test statistic
equals

LR = −2(ln(LM0 ) − ln(LM1 ))

= G2(M0) − G2(M1), (24)

where ln(LM0 ) and ln(LM1 ) are the log-
arithms of the maximum of the likelihood
in the nested model (i.e., β = 0) and
full models, respectively. The LR statistic
can also be computed using G2(M0) and
G2(M1), which are the likelihood ratio global
goodness-of-fit statistics4. The sampling dis-
tribution of the LR is approximately chi-
square with the degrees of freedom equal to
the difference between the degrees of freedom
of the two models. Even when a likelihood
ratio goodness-of-fit statistic does not have
an approximate chi-square distribution, the
sampling distribution of the conditional LR
statistic is often reasonably well approximated
by a chi-square distribution. In our example,
for rest-score, LR = 42.60, df = 1 and
p < .01, and for degree earned, LR = 8.04,
df = 2 and p = .02.

We can also use the conditional likelihood
ratio test to assess whether the restrictions
that we placed on the parameters for degree
in (10) (i.e., Ho : (β2 − 2β3) = 0). The
restricted model (17) is a special case of
(10), and not surprisingly, LR = 10.5824 −
10.5611 = .02, df = 1, p = .99. Model (17)
is preferable because it is simpler and gives a
good representation of the data.

POISSON REGRESSION MODELS FOR
COUNTS

In this section, we discuss and illustrate the
Poisson regression model for counts, show
the relationship between Poisson regression
and logistic regression, and describe some
special models for square tables. When
explanatory variables are all categorical,
Poisson regression models are often referred
to as “log-linear” models.
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The model

The GSS vocabulary data in Table 14.3
are used here as an example. The data in
Table 14.3 consist of a cross-classification
of rest-scores (five levels) by highest degree
(three levels) by answer to item A (two
levels). We will start by treating all variables
as nominal variables and then consider
rest-score and degree earned as metric
variables.

The response variable y is a count, which in
our example is the frequency yjkl in the (j, k, l)
cell of Table 14.3 where j, k and l index the
levels of rest-score, degree and answer to item
A, respectively. We assume that the counts
yjkl follow a Poisson distribution and use the
canonical link function, log(μjkl).

A notational convention often used when
analyzing counts in a cross-classification of
categorical variables is to represent the cate-
gorical variables using an ANOVA-like form.
For example, rest-score has five categories,
rather than defining four dummy or effect
codes, x1, x2, x3, x4 and writing the linear
predictor as β1x1 + β2x2 + β3x3 + β4x4, it
may be written more compactly as λR

j where
j = 1, 2, 3, 4. The superscript symbolizes the
effect (i.e., R for rest-score), and the subscript
j indicates the level of rest-score.

Agood starting point is the log-linear model
of complete independence

log(μjkl) = λ+ λR
j + λD

k + λA
l , (25)

where λ ensures that the sum of the fitting
counts equals the total number of observed
counts, λR

j , λD
k and λA

l are the marginal effects
for rest-score, highest degree earned, and
answer to item A, respectively. Since λR

j , λD
k

and λA
l are in the model, the fitted margins for

rest-score, degree earned, and answer to item
A equal their respective observed margins. If
a margin is fixed by design, the corresponding
marginal effect term should be included in the
model.

More interesting models are those that
include interactions, such as the homogeneous
association log-linear model, which includes

all two-way interactions

log(μjkl) = λ+ λR
j + λD

k + λA
l + λRD

jk

+ λRA
jl + λDA

kl , (26)

where the terms λRD
jk , λRA

jl , and λDA
kl represent

interactions or dependencies between pairs
of variables. As the interaction terms are in
the model, the fitted and observed two-way
margins are equal (e.g., n+kl = μ̂+kl because
λDA

kl is in the model).
Interactions in log-linear models are inter-

preted in terms of conditional or partial
odds ratios. Partial odds ratios, which are
the odds ratios in two-way tables of two
variables conditional on all other variables,
are functions of the interaction parameters.
For example, using equation (26), the odds
ratio for rest-scores j and j′ and answers l and
l′ to item A given degree k equals

γjj′,ll′(k) = μjklμj′kl′

μj′klμjkl′

= exp[λRA
jl + λRA

j′l′ − λRA
j′l − λRA

jl′ ].
(27)

The odds ratios between rest-score and A
are the same over the K levels of degree
earned. An implication of the homogeneous
association model is that the other partial odds
ratios are homogeneous. For example,

γjj′,kk′(l) = exp[λRD
jk + λRD

j′k′ − λRD
j′k − λRD

jk′ ]
(28)

γkk′,ll′(j) = exp[λDA
kl + λDA

k′l′ − λDA
k′l − λDA

kl′ ].
(29)

In Poisson regression models, model
parameters for discrete predictor variables
require location constraints for identification.
Typical ones are to set one level equal to zero
(e.g., λR

1 = 0, λRA
1l = λRA

j1 = 0), which
corresponds to dummy coding the variable,
or zero-sum constraints (e.g.,

∑
j λ

R
j = 0,∑

j λ
RA
jl = ∑

l λ
RA
jl = 0), which correspond

to using effect coding.
Models (25) and (26) were fit to the data.

The model of independence fails (i.e., G2 =
209.72, df = 22, p < .01); however, the
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homogeneous association model (26) gives a
good representation of the data in Table 14.3
(i.e., G2 = 5.86, df = 8, p = .67). The
conditional LR statistics for the variables are
all significant (i.e., for H0 : λRD

jk = 0,
LR = 111.61, df = 8, and p < .01; for
H0 : λRA

jl = 0, LR = 47.30, df = 4, p < .01;

and for H0 : λDA
kl = 0, LR = 8.38, df = 2,

p = .02).

The logit/log-linear model
connection

For every logit model there is an equivalent
log-linear (Poisson regression) model; how-
ever, not every log-linear model corresponds
to a logit model. This result is one of the
benefits of using the canonical link functions
for the Poisson and Binomial distributions.
We show the equivalence between logit and
log-linear models by example.

In the final logit model for the GSS data
(i.e., Equation (17)) item A was the response
variable, and rest-score and degree were met-
ric explanatory variables. Also recall that in
the logit modeling, the binomial distribution
was assumed for the responses to item A and
the number of cases for each combination
of rest-score and degree earned was treated
(implicitly) as fixed (i.e., “n” in the binomial
distribution). Therefore, to ensure that the
rest-score by degree margin is fit perfectly

by the model the term λRD
jk must be in the

log-linear model. Numerical variables can be
included in Poisson regression models. Since
the homogeneous association model fits the
data, a special case of it will be fit to the data
using rest-scores and degree as metric vari-
ables in the interaction terms between each of
these and item A; that is, we will replace λRA

jl

by the product λRA
l (restscorej), and replace

λDA
kl by λDA

l (degreek), which yields

log(μjkl)=λ+λR
j +λD

k +λA
l +λRD

jk

+λRA
l (restscorej)+λDA

l (degreek).
(30)

The goodness-of-fit statistics for this
log-linear model are G2 = 10.58 and

X2 = 10.01 with df = 12, which are exactly
the same as our final logit model in the
previous section. Logit model (17) and
log-linear model (30) are equivalent models.

The correspondence between (17) and (30)
can be seen by forming logits using (30):

log

(
μjk2

μjk1

)
= log(μjk2) − log(μjk1)

= (λA
2 − λA

1 ) + (λRA
2 − λRA

1 )(restscorei)

+ (λDA
2 − λDA

1 )(degreei)

= β0 + β1(restscorei) + β2(degreei),
(31)

where β0 = (λA
2 − λA

1 ), β1 = (λRA
2 − λRA

1 ),
and β2 = (λDA

2 − λDA
1 ). Note that the index

i in the logit model corresponds to unique
combinations of indices j and k in the log-
linear model. Only terms that have an A
superscript in the log-linear model appear in
the logit model.

When there is a single dichotomous
response variable, using the logistic regres-
sion formulation is preferable because there
are fewer parameters and numerous regres-
sion diagnostic procedures specifically for
logistic regression exist. The diagnostic pro-
cedures are especially useful when global
goodness-of-fit statistics do not have approx-
imate chi-square distributions. When the
response variable has more than two levels
or there are multiple response variables,
such models can be fit to data as Poisson
regression or log-linear models. We will use
logit models when modeling choices are made
between two objects but use log-linear models
when modeling choices among three or more
options. When we consider item response
models, where each item on a test or survey
is a response variable (i.e., multiple response
variables), we will use log-linear and related
models.

Log-linear models for square tables

Square tables are those where the row and
column classifications are the same. Examples
of square tables include cross-classifications
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Table 14.5 The number of women college students who would prefer to spend an hour with
the row celebrity over the column celebrity (Kroeger, 1992).

Bush Reagan Clinton Blair Kersee Caprati

Barbara Bush — 64 34 62 45 52
Nancy Reagan 32 — 31 46 40 41
Hillary Clinton 62 65 — 64 54 48
Bonnie Blair 34 50 32 — 36 40
Jackee Joyner-Kersee 51 56 42 60 — 56
Jennifer Caprati 44 55 48 56 40 —

of winning (rows) and losing (columns)
baseball teams where cells equal the number
of times a row team wins a game against
a column team (Fienberg, 1985), the movie
ratings given by Roger Ebert (rows) and Gene
Siskal (columns) who rate the same movies
(Agresti and Winner, 1997), and choices
between pairs of cars (Maydeu-Olivares and
Böckenholt, 2005). The data used here are
choices made by 96 women college students
(Kroeger, 1992). Each subject was given
pairs of female celebrities and chose which
one they would prefer to talk with for
an hour. The entries in Table 14.5 equal
the number of students who chose the
row celebrity over the column celebrity.
There are no observations in the diagonal
of Table 14.5.

Log-linear models designed to deal with
square tables can be used to fit psychometric
models to data, and they are interesting in
their own right. The models described here
are quasi-independence, symmetry, and quasi-
symmetry. With square tables, there are often
either no entries along the diagonal or the
diagonal entries are very large (e.g., if Sikel
and Ebert for the most part agree, then we
would expect the values on the diagonal
to be large). To fit these models as log-
linear models requires the use of methodology
for dealing with empty cells or structural
zeros.

To test whether there is any association
between the row and column classifications
when there are empty cells, any num-
ber is input for the empty cell (e.g., 0)
and a parameter is estimated for it. This
parameter ensures that the fitted counts and
the values input are equal. The resulting

quasi-independence model is:

log(μij) = λ+ λR
i + λC

j + δiI(i = j) (32)

where λR
i and λC

j are the marginal effects for
the row and columns, I(i = j) = 1 if i = j and
0 otherwise, and δi is the parameter for the ith
diagonal cell.

A common hypothesis for square tables is
that the table is symmetric (i.e., μij = μji).
If a matrix is symmetric, then sum of entries
in the ith row must equal the sum in the ith
column; that is, the margins must be equal.
The log-linear model of symmetry for tables
with empty cells for the diagonal is

log(μij) = λ+ λi + λj + λRC
ij + δiI(i = j),

(33)

where λRC
ij = λRC

ji , and the marginal effects
are the same (i.e., no super-scripts on λi

and λj).
The symmetry model is very restrictive

because is specifies both the marginal and
joint distributions. Marginal homogeneity can
be relaxed by allowing the marginal effect
terms to differ while retaining symmetry in
the association. This model is known as quasi-
symmetry5

log(μij) = λ+ λR
i + λC

j + λRC
ij + δiI(i = j),

(34)

where the interaction parameters are λRC
ij =

λRC
ji , and λR

i does not necessarily equal λC
i .

The models of quasi-independence and
symmetry fail to fit the celebrity data;
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however, the quasi-symmetry model gives
good representation of the data in Table 14.5
(G2 = 9.41, df = 10, p = .49). As a
preview to psychometric models for choice
data discussed in following sections, note
that odds for i �= j based on the model of
quasi-symmetry (34) equal

μij

μji
= exp[λ+ λR

i + λC
j + λRC

ij ]
exp[λ+ λR

j + λC
i + λRC

ji ]
= exp[(λR

i − λC
i ) − (λR

j − λC
j )]

= exp[ψi − ψj], (35)

which is the Bradley–Terry–Luce model
discussed later. At the end of the chapter, we
discuss how the Rasch model can be fit as a
model of quasi-symmetry.

PSYCHOMETRIC FRAMEWORK

A latent continuum is often assumed to
govern the choices made by individuals
among objects. The continuum may be
utility, preference, skill, achievement, ability,
excellence, or some other construct upon
which comparisons or decisions are made.
Models for choices generally make similar
assumptions about the values of objects on
a latent continuum. Specifically, let Sik be
the “subjective” impression or value on the
underlying construct for individual i and
object k. This subjective value Sik is typically
assumed to be random and thus accounts for
variation in responses. Variation in responses
may be due to differences made by a single
individual on repeated occasions, differences
between individuals, or both. The model for
Sik used for all our psychometric models is

Sik = ψik + εik (36)

where ψik is assumed to be a fixed value
on the continuum for object or item k and
individual i, and εik is typically assumed to be
random. We further assume that E(εik) = 0,
the variance var(εik) equals a constant for all i
and k, and εik is independent over objects and
individuals.

The psychometric models discussed in the
remainder of this chapter can all be fit
as a GLM, and Equation (36) provides an
unifying framework for our psychometric
models. In different psychometric models,
assumptions regarding the components of Sik

differ as well as how individuals’values on Sik

effect observed choices and decisions. These
assumptions determine the random, link, and
systematic components for each model.

DISCRETE CHOICE/RANDOM UTILITY
MODELS

Models for choices between pairs of objects
are discussed in the next section, and models
for choices among a set of objects are
discussed on p. 327. Models for paired
comparisons are special cases of those for
choices among a set of objects where the set
only contains two choice options.

Models for paired comparisons

The models described in this section apply
to cases where there is a set of objects (e.g.,
cars, colleges or universities, celebrities) and
an individual is given the choice between
two of them on a single trial. Two common
psychometric models for such data are
Thurstone’s law of comparative judgment
(Thurstone, 1927; see also Torgenson, 1958)
and the Bradley–Terry–Luce (BTL) choice
model (Bradley and Terry, 1952; Luce, 1959).
Fienberg and Larntz (1976; see also Fienberg,
1985) showed how the BTL model can be fit
as quasi-symmetric and quasi-independence
log-linear models; however, in this section,
we show how the BTL and Thurstone Case V
models can be fit as logit and probit models,
respectively (e.g., Agresti, 2002; Powers and
Xie, 2000).

In both the BTL and Thurstone’s model,
objects are assumed to be compared with
respect to their values of Sik ; however, on
each occasion the value of the object on
the latent continuum may randomly vary
around its mean value (i.e., E(Sik) = ψik).
In Thurstone’s law of comparative judgement,

texreader
Highlight
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which builds on Weber’s law and Fechner’s
work in psychophysics, Thurstone proposed
“some kind of process in us by which we
react differently to several specimens…”
(Thurstone, 1927: 274.).

The assumed comparison process involves
comparing two objects’values Sik and Sik′ , and
the object with the larger value is chosen. Our
measurement model is:

Yi,kk′ =

⎧⎪⎪⎨
⎪⎪⎩

1 if (Sik − Sik′ ) > 0
(i.e., k chosen over k′)

0 if (Sik − Sik′ ) ≤ 0
(i.e., k′ chosen over k).

(37)

The response variable is assumed to be
a binomial random variable. Data can be
analyzed on un-aggregated or individual level
(i.e., Yi,kk′ ), in which case the response is
a 0/1 variable with n = 1. When the data
are analyzed on collapsed data (i.e., Ykk′ =∑

i Yi,kk′ ), the response variable is how many
times object k was selected over k′ with
n equal to the number of individuals who
compared the two objects.

The distribution of εik in Thurstone’s model
is assumed to be normal, and the distribution
in the BTL model is assumed to be Gumbel.
These distributional assumptions determine
the link function. When the distributions of
εik and εik′ are symmetric, (e.g., normal or
logistic), the probability that k is selected over
k′ equals

P(Yi,kk′ =1)=P(Sik −Sik′>0)

=P(εik −εik′>−(ψik −ψik′ ))

=P(εik −εik′ )≤ (ψik −ψik′ )).
(38)

If εik and εik′ are both N (0, σ 2) and inde-
pendent, then (εik − εik′ ) ∼ N (0, 2σ 2). The
right side of (38) is found from a cumulative
normal distribution and the link function is
the probit. If εik and εik′ are independent
random variables from an extreme value
(Gumbel) distribution with mean 0 and equal
scale parameters, then the distribution of
their difference εik − εik′ follows a logistic

distribution (Nadarajah, 2007; Train, 2003;
Yellott, 1977) and the link function is the logit.

The last component of the GLM that needs
to be specified is the systematic component.
The ψiks are the parameters of model, so the
systematic component are indicator variables
for the objects in the pair compared. When
objects k and k′ are compared, the values of
the explanatory variables are 1 for object k,
−1 for object k′, and 0 for all of the others.
Our model for paired comparisons is a GLM
with the Binomial distribution for the random
component, the link is either the logit or
probit, and the linear predictor equals object
indicators. Putting these three components
together yields the following GLM:

g(P(Yi,kk′ = 1)) = ψik − ψik′ , (39)

where g(.) is either the probit or logit link.
Note that there is no intercept in this model.
When the link is the logit (i.e, the BTL model),
Model (39) is the same Equation (35), which
was derived from the log-linear model of
quasi-symmetry.

Both the BTL and Thurstone’s models were
fit to the celebrity choice data in Table 14.5
as logit and probit models, respectively. Both
models give a good representation of the data
(i.e., G2 = 9.41 for the BTL and G2 =
9.42 for Thurstone, each with df = 10).
The estimated parameters and standard errors
for the BTL and Thurstone Case V models
are reported in Table 14.6. The order of the
celebrities in Table 14.6 corresponds to the
most preferred to the least preferred celebrity.
Hillary Clinton was most likely to be selected
and Nancy Reagan and Bonnie Blair were
the least. The estimated parameters from the
two models are nearly perfectly correlated, but
those from the BTL model are slightly larger
than those from Thurstone’s model, because
the standard normal distribution has a smaller
variance than the standard logistic distribution
(Powers and Xie, 2000).

The BTL model is often presented as

P(Ykk′ = 1) = πk

πk + πk′
, (40)
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Table 14.6 Estimated parameters and standard errors from the Thurstone Case V model and
the Bradley–Terry–Luce model fit to the celebrity data.

Thurstone Case V Bradley–Terry–Luce

Celebrity ψ̂ s.e. ψ̂ s.e. π̂

Hillary Clinton 0.2224 0.0746 0.3577 0.1203 .24
Jackee Joyner-Kersee 0.0969 0.0743 0.1560 0.1192 .19
Barbara Bush 0.0620 0.0743 0.0991 0.1190 .18
Jennifer Capirati 0.0000 — 0.0000 — .16
Bonnie Blair −0.2268 0.0746 −0.3637 0.1201 .11
Nancy Reagan −0.2357 0.0746 −0.3783 0.1202 .11

whereπks are probabilities; therefore, we also
transformed the ψ̂k from the BTL into prob-
abilities (i.e., π̂k = exp(ψ̂k)/

∑
h exp(ψh)).

The estimated probabilities are reported in
Table 14.6.

If the BTL or Thurstone’s model fail to
give a good representation of data, possible
reasons include un-modeled heterogeneity
between individuals, a lack of independence
of a person’s judgments over pairs, or the
homogeneity of variance assumption. Models
for the ψiks can be proposed that include the
measures on individuals or characteristics of
the choice objects. Models forψik that include
both measures on individuals and choice
objects are illustrated in the next section. See
Maydeu-Olivares and Böckenholt (2005) for
further extensions for Thurstone’s model.

Multinomial discrete choice models

Some studies involve a choice among a set
of possible options. For example, in the High
School and Beyond data, students were asked
what career they would like. In this section,
McFadden’s conditional multinomial choice
model is presented (McFadden, 1974; see also
Agresti, 2002; Fahrmeir and Tutz, 2001; Long,
1997; Powers and Xie, 2000).

The measurement model for multicategory
choices is

Yik =
⎧⎨
⎩

1 if object k has the largest value of
Sik in the choice set

0 otherwise.

Each of the objects in the choice set has
different attributes, which could be used
to help predict the value ψik . Furthermore,

decision makers may be heterogeneous and
observed measures of individuals’ character-
istics may also help to predict ψik . Suppose
that we have a set of q explanatory variable
x1ik, . . . , xqik, which may be attributes of
objects, characteristics of individuals, and
even interactions between them. Using these
variables, our model for subjective values is

Sik =
∑

p

βpxpik + εik . (41)

If εik follows an extreme value or Gumbel dis-
tribution, then the probability that individual
i selects the option with the largest Sik equals

P(Yik = 1|x1ik, . . . , xqik)

= exp[∑p βpxpik]∑
k exp[∑p βpxpik] . (42)

(McFadden, 1974).
Model (42) is equivalent to the following

Poisson regression model

log(μik) = λ+ λInd
i + λC

k +
∑

p

βpxpik,

(43)

where λ ensures that the fitted values sum to
the sample size (number of individuals), λC

k
is the marginal effect for choice option k that
ensures that the fitted number of choices for k
equals the observed number, and λInd

i ensures
that the fitted values for individual i sum to
one. Since each person makes a single choice,
the individual margin must sum to one, which
necessitates the λInd

i parameters. The λInd
i s are

nuisance parameters.
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If an individual is only given a sub-set of
the possible choice options, then the options
not offered are structural zeros, which can be
handled using indicator variables as was done
earlier with the log-linear models for square
tables. For simplicity, we assume that all
individuals are given the same choice options.

From (43), we get the same model for
probabilities as in (42) by recognizing that
the fitted values from (43) range from 0 to
1 and sum to 1 (i.e., the μik/n = μik are
probabilities)

μik = P(Yi = k|x1ik, . . . , xqik)

= exp[λ+ λInd
i ] exp

⎡
⎣∑

p

βpxpik

⎤
⎦

= exp[∑p βpxpik]∑
h exp[∑p βpxpih)] . (44)

The term exp[λ + λInd
i ] only depends on

individual i and it is in the model to ensure
that probabilities sum to one; therefore, it must
equal

∑
h exp[∑p βpxpih].

The odds of choosing one object over
another based on Model (42) depends on
differences between values on the explanatory
variables for the options and not on the dif-
ferences between parameters as was the case
for the logistic regression models previously
discussed. For example, consider options k
and k′,

P(Yi = k|x1ik, . . . , xqik)

P(Yi = k′|xlik′ , . . . , xqik′ )

= exp

⎡
⎣∑

p

βp(xpik − xpik′ )

⎤
⎦ . (45)

If we add a characteristic of an individual, then
(xpik − xpik′ ) = 0. To incorporated individual
level variables in the model, we need to create
dummy (or effect) codes for the choice objects
and take the interaction between these dummy
variables and the individual level variables as
illustrated below.

To fit (42) to data as log-linear model
(44), the data need to be in an expanded
format; that is, instead one line of data for

each individual, there needs to be K of them,
one for each choice option. To incorporate
individual level explanatory variables, we will
use the HSB data as an example and include
student’s gender and achievement test scores
as explanatory variables. We define dummy
codes for the careers as:

dk =
{

1 for career k
0 otherwise.

(46)

If gender gi is coded as 0 for male and 1
female, the interactions gidk for all k should
be in the design matrix. For achievement
ai, we include the interactions aidk for
k = 1, . . . ,K . Table 14.7 contains the data
lines (design matrix) for individual i for the
model predicting career choice with mean
achievement scores for each career (a career
attribute), and individuals’ achievement score
and gender (student characteristics). When
using the interactions between the dummy
codes and individual level variables, different
parameters are estimated for each career for
students’s achievement and gender.

The education required for a particular
career may be a good predictor of career
choice. Although not ideal, we used the
average achievement scores of those who
selected a particular career (i.e., āk) as a proxy
for the education required for that career.

A number of models were fit to the
career choices made by seniors in the
High School Beyond data set6. Individual
attributes considered were students’ gender,
race, and achievement test scores. Race was
not a significant predictor in any model
fit to the data. The final model includes
mean achievement per career āk , students’
achievement score ai, and students’ gender gi

as predictor variables; that is:

log(μijk) = λ+ λInd
i + λc

k + β1āk+

+
16∑

k′=1

β(1+k′)dk′ai

+
16∑

k′=1

β(17+k′)dk′gi. (47)



[10:09 20/4/2009 5283-Millsap-Ch14.tex] Job No: 5283 Millsap: The SAGE Handbook of Quantitative Methods in Psychology Page: 329 311–336

CATEGORICAL DATA ANALYSIS WITH A PSYCHOMETRIC TWIST 329

Table 14.7 Section of the data file (design matrix) needed to fit the conditional multinomial
discrete choice model as a Poisson regression model where ai d1–ai d16 and gi d1–gi d16 are
variables for student i ’s achievement test score and gender, respectively.

Yik x1ik x2ik x3ik . . . x17ik x18ik x19ik . . . x33ik
Career choice āk ai d1 ai d2 . . . ai d16 gi d1 gi d2 . . . gi d16

1 Clerical 0 256.78 ai 0.0 . . . 0.0 gi 0 . . . 0
2 Craftsman 0 238.00 0.0 ai . . . 0.0 0 gi . . . 0
3 Farmer 0 270.23 0.0 0.0 . . . 0.0 0 0 . . . 0
4 Homemaker 0 238.60 0.0 0.0 . . . 0.0 0 0 . . . 0
5 Laborer 0 230.64 0.0 0.0 . . . 0.0 0 0 . . . 0
6 Manager 0 257.65 0.0 0.0 . . . 0.0 0 0 . . . 0
7 Military 0 249.00 0.0 0.0 . . . 0.0 0 0 . . . 0
8 Operative 0 233.10 0.0 0.0 . . . 0.0 0 0 . . . 0
9 Professional 1 0 268.31 0.0 0.0 . . . 0.0 0 0 . . . 0

10 Professional 2 1 280.97 0.0 0.0 . . . 0.0 0 0 . . . 0
11 Proprietor 0 247.50 0.0 0.0 . . . 0.0 0 0 . . . 0
12 Sales 0 267.28 0.0 0.0 . . . 0.0 0 0 . . . 0
13 School 0 262.25 0.0 0.0 . . . 0.0 0 0 . . . 0
14 Service 0 241.29 0.0 0.0 . . . 0.0 0 0 . . . 0
15 Technical 0 272.22 0.0 0.0 . . . 0.0 0 0 . . . 0
16 Not Working 0 250.00 0.0 0.0 . . . ai 0 0 . . . gi

Since dk = 1 and dk′ = 0 for all k′ �= k,
Model (47) can be written more compactly as

log(μik) = λ+ λInd
i + λC

k + β1āk,

+ β(k+1)ai + β(17+k)gi. (48)

Although we only have three effects in the
model, it is very complex having 33 parame-
ters (16 for achievement, 16 for gender, and
1 for education ). This model was simplified
by setting specific β parameters equal to 0 if
they were not significant, which was done by
dropping the corresponding variable from the
model (e.g., dkai or dkgi). Other parameters
that were similar in value were set equal by
recoding the dummy variable for a particular
interactions. For example, the parameters for
d1gi (clerical), d4gi (homemaker) and d14gi

(service) were approximately equal. A new
dummy variable was defined where dG

1,4,14 =
1 for clerical, homemaker, and service careers,
and 0 otherwise (i.e., dG

i,4,14 = dG
1 +dG

4 +dG
14).

The variable dG
1,4,14gi was added to the model

and d1gi, d4gi and d14gi were deleted. The
restrictions were tested using likelihood ratio
tests. The final model has approximately half
the number of parameters (16 versus 33).

The estimated parameter for education
required for a career (i.e., āk) equals −0.1251
(s.e. = 0.0121, Wald = 107.27, p < .01).

The values for āk are reported in Table 14.7.
The odds of choosing a particular career that
requires only a one point higher score is
exp(−0.1251) = .88. For example, given a
student’s gender and their achievement test
score, the odds of choosing professional 2
versus clerical equals exp[−.1251(280.97−
256.78)] = 0.049. The probability of choos-
ing a career is lower the more education that
a career requires.

The parameter estimates and standard
errors for student achievement and gender are
given in Table 14.8. The careers in the table
have been ordered according to the values of
parameter estimates to aid interpretation. On
the left side of Table 14.8 are the estimated
parameters for the students’ achievement test
scores. Homemaker, laborer and service have
the lowest value (i.e., β̂ = −0.0105), which
means that students with low achievement test
scores tend to be more likely to choose one
of these careers. The career with the highest
values is professional 2 (i.e., doctors, lawyers,
etcetera) with β̂ = 0.0213, so students with
higher achievement test scores are more
likely to choose this career than any of the
other careers. On the right side of Table 14.8
are the estimated parameters for gender.
The career craftsman is least likely to be
chosen by a female (β̂ = −2.57); whereas
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Table 14.8 Parameter estimates from final conditional multinomial logistic model fit to the
career choices of high-school seniors

Achievement Gender

Career Estimate s.e. Wald p Career Estimate s.e. Wald p

Homemaker Craftsman −2.5708 0.6018 18.25 < .01
Laborer −0.0105 0.0010 106.80 < .01 Farmer −1.7046 0.7870 4.69 .03

Service Laborer

Operative −0.0056 0.0012 22.90 < .01 Military −1.0569 0.2589 16.67 < .01

Clerical Operative
Craftsman Technical

Military 0.0000 Manager
Proprietor Professional 1
School Professional 2 0.0000
Not working Proprietor

Manager 0.0051 0.0011 23.08 < .01 Sales
Sales 0.0074 0.0015 23.12 < .01 Not working

Farmer 0.0107 0.0017 37.95 < .01 School 2.0045 0.3556 31.78 < .01

Professional 1 0.0154 0.0014 116.77 < .01 Clerical
Technical 0.0174 0.0011 232.63 < .01 Homemaker 2.5366 0.2135 141.20 < .01
Professional 2 0.0213 0.0017 166.27 < .01 Service

clerical, homemaker and service careers
were most likely to be chosen by a female
(β̂ = 2.54).

ITEM RESPONSE MODELS

Two main goals of item-response theory (IRT)
are to study items on a test or questionnaire for
future use on a measurement instrument and
to measure individuals’ values on some latent
trait. Two basic IRT models are discussed in
this section using GLMs and the psychometric
framework presented earlier.

The specific models discussed here are
the Rasch model and the two parameter
logistic (2PL) model, which are designed
for dichotomous responses and assume one
underlying trait. A number of researchers
have studied the connection between Rasch
and log-linear models (Anderson et al. 2007;
Cressie and Holland, 1983; de Leeuw and
Verhelst, 1986; Kelderman, 1984, 1996; Tjur,
1982), but fewer have studied the connection
between the 2PL model and log-multiplicative
association models (LMA) (Anderson and Yu,
2007; Holland, 1993b). The LMA models
are special cases of homogeneous association
log-linear models (i.e., log-linear model with

two–way interactions between all pairs of
variables).

Although the focus is on models for
dichotomous responses for one latent trait,
the approach presented here, which is based
on Anderson and Yu (2007; Anderson, et al.
2007) readily extends to polytomous variables
and multiple correlated latent variable (e.g.,
Anderson, et al. 2007) with or without
coviariates (Tettegah and Anderson, 2007).

Item response function

Using the model for Sik given in Equation
(36) (i.e., Sik = ψik + εik), the measurement
model is

Yik =

⎧⎪⎪⎨
⎪⎪⎩

1 ifSik>βik

(e.g., yes or a correct response)
0 if Sik ≤βik

(e.g., no or an incorrect response).
(49)

where βik is a criterion for individual i on
item k. To be identifiable, models can have
either random values on the latent variable
(i.e., Sik) or random criteria (i.e., βik), but not
both (Powers and Xie, 2000). The standard
assumption is that εik and hence Sik is random,
and that βik is fixed. In this chapter, all
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individuals are assumed to have the same
criteria for a given item7 (i.e., βik = βk). The
model for the probability of a correct response
to item k is

P(Yik =1|Sik)=P(Sik>βk)

=P(εik>−ψik +βk). (50)

Guttmans’s scalogram (Torgerson, 1958) is
obtained by assuming that εik is fixed
(e.g., εik = 0) and ψik = ψi. With these
assumptions, Model (50) is deterministic. For
a set of K items, Guttman’s scaling model has
strong implications in that only a relatively
small number of possible response patterns
for K items are permissible. As Guttman’s
model rarely fits in practice, Goodman (1975;
see also Fienberg, 1985) proposed a model
for data not perfectly consistent with a
Guttman scale. In this model, the cross-
classification of items is modeled by a
quasi-independence log-linear model where
those response patterns not consistent with a
Guttman scale are treated as structural zeros.
Scale values (i.e., βks) for the items are
computed for the response patterns consistent
with a perfect Guttman scale by taking the
difference between the observed number of
respondents with a consistent pattern and the
predicted for that response pattern based on
the quasi-independence model.

More commonly, a stochastic or probabilis-
tic item response model is formed by letting
εik be random8. If εik follows a normal or
logistic distribution, then P(Yik = 1|Sik) =
P(εik ≤ ψik − βik). In the case of a logistic
distribution, the implied link function is the
logit link, which yields

P(Yik = 1|ψik) = exp[ψik − βk]
1 + exp[ψik − βk] . (51)

In the case of a normal distribution for
εik , the implied link function is probit.
Many item response functions are simply
logistic or probit regression models where the
explanatory variable is latent. In this section,
we use the canonical link function for the
binomial distribution and take advantage of
the connection between logit and Poisson
(log-linear) regression models.

Two parameter logistic model

In psychology and education, a person’s value
on a latent variable is typically assumed to
exist prior to its measurement. Consistent with
this, ψik in (51) is set equal to αkψi, which
allows an interaction between a person and an
item. This yields the 2PL model

P(Yik = 1|ψi) = exp[αkψi − βk]
1 + exp[αkψi − βk] ,

(52)

where ψi is individual i’s value on the latent
variable, αk and βk in the IRT literature are
referred to as ‘discrimination’ and ‘difficulty’
parameters, respectively.

To obtain a model for responses to K items,
the conditional probabilities in (52) for k =
1, . . .K are assumed to independent given ψi

(i.e., local independence). The model for the
observed data (i.e., response patterns) is

P(Yi = y) =
∫ K∏

k=1

P(Yik = yk|ψi)f (ψi)dψi,

(53)

where y = (y1, . . . , yK ) is a possible response
pattern. In practice, numerical integration is
typically used to fit the model to data. An
alternative approach based on Anderson and
Yu (2007; Anderson, et al. 2007) does not
require numerical integration and yields either
a log-linear or log-multiplicative model for the
data.

Given estimates of the αks in Equation
(52), the weighted sum score

∑
h αhyih is a

sufficient statistic for ψi (Andersen, 1995;
Heinen, 1996), where yij is the score (0 or 1)
for individual i on item h. In the model
for item k, replacing ψi by the weighted
sum

∑
h �=k αhyih, which is based on all items

except k, yields

P(Yik = 1|yih, h �= k)

= exp[αk(
∑

h �=k αhyih) − βk]
1 + exp[αk(

∑
h �=k αhyih) − βk].

(54)

Justification and precedent for using rest-
scores for studying item response functions
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can be found in Junker and Sijtsma (2000),
and was done earlier on page 317.

For a set of K items, there are K item-
response functions (54), one for each item. A
set of models defined as in (54) for K items
over-determines the joint distribution of the
responses to the items (i.e., the distribution of
response patterns). Restrictions are required
to ensure that the conditional models are
consistent or compatible with some joint
distribution. The compatibility conditions are
that the coefficient when predicting responses
to item k based on k′ is the same as the
coefficient when predicting responses to item
k′ based on k (Joe and Liu, 1996). These
conditions are met in (54). When predicting
k from k′, the coefficient for item k′ is αkαk′ ,
which equals αk′αk , the coefficient for k when
predicting k′ from k.

The joint distribution implied by the set of
conditional models defined in (54) is a log-
multiplicative association model

log(P(Yi = y)) = λ+
∑

k

βkyik

+
∑
k<h

αkαhyikyih. (55)

Model (55) is a special case of a homoge-
neous association log-linear model where the
unstructured two-way interaction parameters
between items k and h have been replaced
by the products αkαh. This model is a
generalization of Goodman’s RC association
model for two variables (Goodman, 1979,
1985). The parameters of the LMAassociation
Model (55) equal those from the 2PL model
up to a linear transformation.

The LMA in (55) is not truly a GLM
because the systematic component contains
multiplicative terms; however, maximum
likelihood estimation of the parameters of
LMAs can be done without numerical inte-
gration. As an example, the 2PL model
was fit to the five vocabulary items from
the 2004 GSS (Davis, Smith, and Marsden,
2007) as an LMA model and by marginal
maximum likelihood estimation, which is a
standard method in IRT applications. The
data are given in Table 14.9. Both models

were fit to the data using the LEM program
(Vermunt, 1997). The fit statistics are reported
in Table 14.10. In addition to likelihood
ratio statistics, the dissimilarity index and
the Bayesian information criterion (BIC) are
also reported. These can be used to compare
non-nested models. The dissimilarity index is

D =
∑

i |yi − ŷi|
2N

, (56)

where N is the total sample size. The
dissimilarity index is interpretable as the
proportion of observations that would need to
have to change response patterns (cells of the
cross-classification of the items) for the model
to fit perfectly. The BIC statistic is

BIC = G2 − df ln(N). (57)

Smaller values of D and BIC indicate better
models.

The goodness-of-fit statistics for the 2PL
model fit to data by the two estimation
methods are very similar and the models
fit by both of the methods give adequate
representations of the data (i.e., for LMA,
G2 = 27.30, df = 21, p = .16 and for
MMLE, G2 = 26.26, df = 21, p = .20). The
correlations between parameter estimates for
the βs equals r = .97 and for the αs equals
r = .99. In terms of goodness-of-fit and
parameter estimation, the closeness of results
between the MMLE of the 2PL and MLE of
the LMA is consistent with the findings of

Table 14.9 Cross-classification of five of the
vocabulary items from the 2004 General
Social Survey

E

0 1

F F

A C D 0 1 0 1

0 0 0 16 2 4 0
0 0 1 17 18 14 91
0 1 0 1 0 1 0
0 1 1 3 4 5 18
1 0 0 12 6 3 11
1 0 1 23 60 74 513
1 1 0 1 1 0 1
1 1 1 3 8 10 235
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Anderson and Yu (2007), who simulated data
using (53) where ψi was from either a normal
or exponential distribution.

The Rasch model

The Rasch model can be viewed as special
case of the 2PL where the discrimination
parameters are constant over items (i.e., αk =
α). Typically α is set equal to 1 for a correct
response and 0 otherwise. Following the same
procedures used to derive a LMA from the
2PL, we use φ

∑
h �=k yih as an estimate of

ψi when predicting item k from the rest. We
have included a weight parameter φ because
the scale of the latent variable is unknown
(Anderson, et al. 2007). Using the rest-score
for ψi we obtain

log(P(Yi =y))=λ+
∑

k

βkyik +φ
∑
k<h

yikyih.

(58)

This model is a GLM, specifically, a log-
linear by linear association model, which is
a Poisson regression model.

Another approach to fitting the Rasch model
as a GLM is to fit it as a quasi-symmetric
log-linear model, which yields conditional
maximum likelihood estimates (Tjur, 1982;
see alsoAgresti, 2002; de Leeuw and Verhelst,
1986; Kelderman, 1996). The Rasch model as
a quasi-symmetric log-linear model is

P(Yi = y) = exp

[
λ+

∑
k

βk + λtotal
y1+...+yK

]
,

(59)

where λtotal
y1+...+yK

is the parameter for the test
total y1 + . . .+yK . In this model, the test total

is treated as a nominal variable. This model
is quasi-symmetric, because the interaction
parameter λtotal

y1+...+yK
for response patterns

with the same number of correct answers
is the same. For example, consider our
vocabulary example. The response patterns
(yA, yC, yD, yE, yF) and (yC, yA, yD, yE, yF),
where answers to A and C have been
permuted, has the same test total and value
for λtotal in the model.

In the log-linear by linear model, the
association between two items, say k and h
is symmetric (i.e., φyjyh = φyhyj). The log-
linear by linear model association model can
be viewed as a limited information quasi-
symmetric Rasch model. The association is
symmetric, but it does not permit higher-
order associations. Model (59) does allow for
higher-order associations.

The Rasch model was fit to the five
vocabulary items from the 2004 GSS (Davis
et al. 2007) in Table 14.9 as a quasi-
symmetric log-linear model, a log-linear by
linear association model, and by MMLE
assuming a normal distribution for ψi. The fit
statistics are reported in Table 14.10.Although
none of the Rasch models estimated yields
a good representation of the data, notable is
the difference in goodness-of-fit of the Rasch
models under different estimation methods.
The model fit by MMLE fits the data the worst,
followed by the log-linear by linear model,
and the best is the quasi-symmetry model.
These results are expected, because, the quasi-
symmetry estimation of the Rasch Model
(59), referred to as the “extended random
Rasch” model (de Leeuw and Verhlest, 1986)
needs complicated restrictions placed on the
parameters (Lindsay, Clogg, and Grego, 1991;

Table 14.10 Summary of item response models fit to the GSS 2004 vocabulary words

Model df G2 p D BIC

Complete independence 26 334.20 <.01 .1354 150.86
Homegeneous association 16 25.43 .06 .0396 −87.40
Rasch as a quasi-symmetric log-linear model 22 56.32 <.01 .0426 −98.82
Rasch as log-linear by linear 25 66.72 <.01 .0517 −109.58
Rasch by MMLE 25 74.10 <.01 .0589 −102.20
2PL as a log-multiplicative association model 21 27.30 .16 .0402 −120.79
2PL by MMLE 21 26.26 .20 .0380 −121.82
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Table 14.11 Summary of generalized linear models and related models that are equivalent to
psychometric models, which were described in this chapter

Generalized linear Model

Psychometric Model Random Systematic Link

Discrete choice/random utility models
Thurstone’s Law of Comparative judgment, Case V Binomial Contrasts probit
Bradley–Terry–Luce Binomial Contrasts logit
Bradley–Terry–Luce Poisson Quasi-symmetry log

Item-response models
Rasch Poisson Quasi-symmetry log
Rasch Poisson Linear by linear log
Two-parameter logistic Poisson Multiplicative log

Hout, Duncan, and Sobel, 1987), but these
are difficult to impose and were not imposed
here. This example illustrates that under
MMLE results “may become quite different
from CML [conditional maximum likeli-
hood estimation]” (de Leeuw and Verhlest,
1986: 192).

Taking into account the different number
of parameters estimated, the sample size
and goodness-of-fit, the log-linear by linear
model is the best for the Rasch model (i.e.,
smallest BIC). Even though the goodness-of-
fit statistics for the Rasch models estimated as
a quasi-symmetric log-linear model and log-
linear by linear models differ, the estimated
βs are highly correlated, r > .99. In this case,
a potential advantage of using the log-linear
by linear estimates over the quasi-symmetric
model is that all of the standard errors from
the log-linear by linear model were smaller
except for one.

CONCLUSION

Table 14.11 gives a summary of the psy-
chometric models and the corresponding
GLMs discussed in this chapter. Following the
methods used here, additional psychometric
models can be formulated and estimated
as standard models for categorical data.
For example, a version of Thurstone’s Law
of Categorical Judgment can be fit as a
proportional odds model, which is a logistic
regression model for ordinal data. Addi-
tionally, multidimensional compensatory IRT
models with covariates are an extension of

the models presented earlier, and models
in a Rasch family for polytomous items
and multiple latent variables is described in
Anderson et al. (2007). The MLE of log-
linear by linear and LMA models is limited to
relatively small numbers of terms; however,
Anderson et al. (2007) provide an estimation
method for the Rasch family that only requires
fitting a single logistic regression model to
data and modification of this method can
handle more general models. Although the
relationship between GLMs and psychometric
models was emphasized in this chapter,
categorical data analysis is very useful in
wide range of psychological studies, whether
it involves latent variable models or not.

NOTES

1 For underlying multivariate normality, the model
implied has association parameters that are function-
ally related to partial correlations.

2 The parameters of the logistic distribution (mean
0 and dispersion parameter .625) were chosen so
that the standard normal and logistic distributions
approximate each other.

3 For the curious, the Wald statistic equals 7.97,
df = 2, and p = .02.

4 The global goodness-of-fit statistics G2 are LR
statistics that compare a specific model to the statured
model (i.e., the data).

5 Marginal homogeneity can be tested by doing a
conditional likelihood ratio test because the symmetry
log-linear model is nested within the quasi-symmetric
model.

6 The career “protective” was omitted from this
analysis because no females choose this career.

7 Models for βk could be specified that include
attributes of the items.



[10:09 20/4/2009 5283-Millsap-Ch14.tex] Job No: 5283 Millsap: The SAGE Handbook of Quantitative Methods in Psychology Page: 335 311–336

CATEGORICAL DATA ANALYSIS WITH A PSYCHOMETRIC TWIST 335

8 εik may be random due to random sampling
or random behavior (Holland, 1990a). The source of
stochastic responses empirically cannot be determined
simply by fitting an IRT model.
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