Introduction to Generalized Linear Models
Edps/Psych/Soc 589

Carolyn J. Anderson

Department of Educational Psychology

©Board of Trustees, University of Illinois

Fall 2019
Outline

- Introduction (motivation and history).
- “Review” ordinary linear regression.
- Components of a GLM.
 1. Random component.
 2. Structural component.
 3. Link function.
- Natural exponential family (technical).
- Normal Linear Regression re-visited.
- GLMs for binary data (introduction).
 Primary Example: High School & Beyond.
 1. Linear model for π.
 2. Cumulative Distribution functions (alternative links).
 3. Logistic regression.
 4. Probit models.
Outline (continued)

- GLMs for count data.
 1. Poisson regression for counts.
 Example: Number of deaths due to AIDS.
 2. Poisson regression for rates.
 Example: Number of violent incidents.

- Inference and model checking.
 1. Wald, Likelihood ratio, & Score test.
 2. Checking Poisson regression.
 3. Residuals.
 4. Confidence intervals for fitted values (means).
 5. Overdispersion.

- Fitting GLMS (a little technical).
 2. Statistic inference & the Likelihood function.
 3. “Deviance”.

- Summary
Introduction to Generalized Linear Modeling

Benefits of a model that fits well:

- The structural form of the model describes the patterns of interactions or associations in data.
- Inference for the model parameters provides a way to evaluate which explanatory variable(s) are related to the response variable(s) while (statistically) controlling for other variables.
- Estimated model parameters provide measures of the strength and (statistical) importance of effects.
- A model’s predicted values “smooth” the data — they provide good estimates of the mean of the response variable.
Advantages of a Modeling Approach

Over Significance Testing

- Models can handle more complicated situations. For example, Breslow-Day is limited to $2 \times 2 \times K$ tables and does not provide estimates of common odds ratios for tables larger than 2×2.

- Loglinear models can be used to test for homogeneous association in $I \times J \times K$ (or higher–way) tables and provide estimates of common odds ratios.

- With models, the focus is on estimating parameters that describe relationships between/among variables.
A Little History

From Lindsey (who summary that from McCullagh & Nelder who got a lot from Stiegler)

- Multiple linear regression — normal distribution & identity link (Legendre, Gauss: early 19th century).
- Likelihood function — a general approach to inference about any statistical model (Fisher, 1922).
- Dilution assays — a binomial distribution with complementary log-log link (Fisher, 1922).
- Exponential family — class of distributions with sufficient statistics for parameters (Fisher, 1934).
- Probit analysis — binomial distribution & probit link (Bliss, 1935).
A Little History (continued)

- Logit for proportions — binomial distribution & logit link (Berkson, 1944; Dyke & Patterson, 1952)
- Item analysis — Bernoulli distribution & logit link (Rasch, 1960).
- Log linear models for counts — Poisson distribution & log link (Birch, 1963).
- Regressions for survival data — exponential distribution & reciprocal or log link (Feigl & Zelen, 1965; Zippin & Armitage, 1966; Glasser, 1967).
- Inverse polynomials — Gamma distribution & reciprocal link (Nelder, 1966).
- Nelder & Wedderburn (1972): provided unification. They showed
 - All the previously mentioned models are special cases of a general model, “Generalized Linear Models”
 - The MLE for all these models could be obtained using same algorithm.

- All of the models listed have distributions in the “Exponential Dispersion Family”
Software Developments

- Computer software development in the 70’s: “GLIM”
 Short for “Generalized Linear Interactive Modelling.”
- Any statistician or researcher could fit a larger class of models (not restricted to normal).
- Growing recognition of the likelihood function as central to all statistical inference.
- Allowed experimental development of many new methods & uses for which it was never originally imagined.
- PROC GENMOD (GENeralized linear MODels) in SAS.
- glm package in R.
Limitations

- Linear function
- Responses must be independent
- There are ways around these by going to a slightly more general models and using more general software (e.g., SAS/NLMIXED, GLIMMIX, NLP, GAMs).
- R has specialized packages for some of the models that are not linear and/or dependent (e.g., packages lme4, logmult, gam).
Review of Ordinary Linear Regression

Linear (in the parameters) model for continuous/numerical response variable (Y) and continuous and/or discrete explanatory variables (X’s).

$$Y_i = \alpha + \beta_1 x_{1i} + \beta_2 x_{2i} + e_i$$

where

$$e_i \sim \mathcal{N}(0, \sigma^2) \quad \text{and independent.}$$

This linear model includes

- Multiple regression
- ANOVA
- ANCOVA
Simple Linear Regression

\[Y_i = \alpha + \beta x_i + e_i \]

where \(e_i \sim \mathcal{N}(0, \sigma^2) \) and independent.

We consider \(X \) as fixed, so \(Y_i \sim \mathcal{N}(\mu(x_i), \sigma^2) \).

In regression, the focus is on the mean or expected value of \(Y \), i.e.,

\[
E(Y_i) = E(\alpha + \beta x_i + e_i) \\
= \alpha + \beta x_i + E(e_i) \\
= \alpha + \beta x_i
\]
GLMs go beyond Simple Linear Regression

Generalized Linear Models go beyond this in two major respects:

▶ The response variable(s) can have a distribution other than normal — any distribution within a class of distributions known as “exponential family of distributions”.

▶ The relationship between the response \(Y \) and explanatory variables need not be simple (“identity”). For example, instead of

\[
Y = \alpha + \beta x
\]

we can allow for transformations of \(Y \)

\[
g(Y) = \alpha + \beta x
\]

▶ These are ideas we’ll come back to after we go through an example
Counts of T_4 cells/mm in Blood Samples

From Lindsey (1997) from Altman (1991). The counts equal T_4 cells/mm in blood samples from 20 patients in remission from Hodgkin’s disease & 20 other patients in remission from disseminated malignancies:

<table>
<thead>
<tr>
<th>Hodgkin’s</th>
<th>Non-Hodgkin’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>396</td>
<td>568</td>
</tr>
<tr>
<td>1212</td>
<td>171</td>
</tr>
<tr>
<td>554</td>
<td>1104</td>
</tr>
<tr>
<td>257</td>
<td>435</td>
</tr>
<tr>
<td>295</td>
<td>397</td>
</tr>
<tr>
<td>288</td>
<td>1004</td>
</tr>
<tr>
<td>431</td>
<td>795</td>
</tr>
<tr>
<td>1621</td>
<td>1378</td>
</tr>
<tr>
<td>902</td>
<td>958</td>
</tr>
<tr>
<td>1283</td>
<td>2415</td>
</tr>
<tr>
<td>375</td>
<td>375</td>
</tr>
<tr>
<td>752</td>
<td>208</td>
</tr>
<tr>
<td>151</td>
<td>116</td>
</tr>
<tr>
<td>736</td>
<td>192</td>
</tr>
<tr>
<td>315</td>
<td>1252</td>
</tr>
<tr>
<td>657</td>
<td>700</td>
</tr>
<tr>
<td>431</td>
<td>771</td>
</tr>
<tr>
<td>688</td>
<td>426</td>
</tr>
<tr>
<td>410</td>
<td>979</td>
</tr>
<tr>
<td>377</td>
<td>503</td>
</tr>
</tbody>
</table>

Is there a “difference” in cell counts between the two diseases?
What is Meant by “Difference”?

- Mean counts
- Variability
- Overall form of the distribution

Naive Approach: Assume a normal distribution and do a “t-test” (i.e., compute difference between means and divide by s.e. of difference).

More Sophisticated approach: Assume a Poisson distribution and compute difference between log of the means (i.e., ratio of means).
Summary of some possibilities and results

<table>
<thead>
<tr>
<th>Model</th>
<th>AIC</th>
<th>“Likelihood ratio”</th>
<th>√“Wald” Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No difference</td>
<td>Difference</td>
<td>in $-2 \log(L)$</td>
</tr>
<tr>
<td>Normal</td>
<td>608.8</td>
<td>606.4</td>
<td>4.5</td>
</tr>
<tr>
<td>Normal log link</td>
<td>608.8</td>
<td>606.3</td>
<td>4.5</td>
</tr>
<tr>
<td>Gamma</td>
<td>591.2</td>
<td>587.9</td>
<td>5.2</td>
</tr>
<tr>
<td>Inverse Gaussian</td>
<td>589.9</td>
<td>588.1</td>
<td>3.8</td>
</tr>
<tr>
<td>Poisson</td>
<td>11652.0</td>
<td>10285.3</td>
<td>1368.96</td>
</tr>
<tr>
<td>Negative Binomial</td>
<td>591.1</td>
<td>587.9</td>
<td>5.3</td>
</tr>
</tbody>
</table>

- AIC = weighs goodness-of-fit & model complexity (smaller is better)
- Wald = \(\left(\frac{\text{parameter}}{\text{standard error}}\right)^2\).
- I get slightly different results than published and between SAS & R.
- Assumptions?
Considering Assumptions

T_4 cells/mm and Hodgkin’s disease data continued

- Independence of observations
- Recall that with Poisson

\[\mu = \sigma^2 \]

- Sample statistics

disease	N	Mean	Variance
hodgkin	20	823.20	320792.27
non-hodgkin	20	521.15	85568.77

- Homogeneity assumption is suspect.
Components of Generalized Linear Models

There are 3 components of a generalized linear model (or GLM):

1. **Random Component** — identify the response variable (Y) and specify/assume a probability distribution for it.

2. **Systematic Component** — specify what the explanatory or predictor variables are (e.g., X_1, X_2, etc). These variables enter in a linear manner

 $$
 \alpha + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_k X_k
 $$

3. **Link** — Specify the relationship between the mean or expected value of the random component (i.e., $E(Y)$) and the systematic component.
Components of Simple linear regression

\[Y_i = \alpha + \beta x_i + \epsilon_i \]

- **Random component**: \(Y \) is the response variable and is normally distributed… generally we assume \(\epsilon_i \sim \mathcal{N}(0, \sigma^2) \).

- **Systematic component**: \(X \) is the explanatory variable is **linear** in the parameters…

\[\alpha + \beta x_i \]

- **Identity link**.

\[g(E(Y_i)) = E(Y_i) = \alpha + \beta x_i \]

Closer look at each of these components…
Random Component

Let \(N = \) sample size and suppose that we have \(Y_1, Y_2, \ldots, Y_N \) observations on our response variable and that the observations are all independent. \(Y \)'s are discrete variables where \(Y \) is either

- **Dichotomous** (binary) with a fixed numbers of trials.
 - success/failure
 - correct/incorrect
 - agree/disagree
 - academic/non-academic program

- **Counts** (including cells of a contingency table):
 - Number of people who die from AIDS during a given time period.
 - Number of times a child tries to take a toy away from another child.
 - Number of times patents generated by firms.

- **Binomial** distribution.
- **Poisson** distribution.
Distributions for Discrete Variables

Thus the two distributions we will be primarily using are:

- Binomial
- Poisson

With GLMs, you can use any distribution that belongs to the “exponential family of distributions”. This is a wide class of distributions that have many of the “nice” properties of the Normal distribution. (we’ll look at this in a bit more detail later).
Systematic Component

As in ordinary regression, we will be modelling means. The focus is on the expected value of our response variable

\[E(Y) = \mu \]

We want to investigate whether and how \(\mu \) varies as a function of the levels of our predictor or explanatory variables, \(X \)'s.

The systematic component of the model consists of a set of explanatory variables and some linear function of them.

\[\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \ldots + \beta_k x_k. \]

This linear combination of our explanatory variables is referred to as a “linear predictor”.
Linear Predictor

This restriction to a linear predictor is not all that restrictive. For example,

- $x_3 = x_1 x_2$ — an “interaction”.
- $x_1 \Rightarrow x_1^2$ — a “curvilinear” relationship.
- $x_2 \Rightarrow \log(x_2)$ — a “curvilinear” relationship.

\[
\beta_0 + \beta_1 x_1^2 + \beta_2 \log(x_2) + \beta_3 x_1^2 \log(x_2)
\]

This part of the model is very much like what you know with respect to ordinary linear regression.
The Link Function

“Left hand” side of an equation/model — the random component,

\[E(Y) = \mu \]

“Right hand” side of the equation— the systematic component; that is,

\[\alpha + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k \]

We now need to “link” the two sides.

How is \(\mu = E(Y) \) related to \(\alpha + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k \)?
More about the Link Function

- Important things about $g(.)$:
 - This function $g(.)$ is “monotone” — as the systematic part gets larger, μ gets larger (or smaller).
 - The relationship between $E(Y)$ and the systematic part can be non-linear.

- Some common links are
 - **Identity** (ordinary regression, ANOVA, ANCOVA):
 \[
 E(Y) = \alpha + \beta x
 \]

 - **Log link** which is often used when Y is nonnegative (i.e., $0 \leq Y$)
 \[
 \log(E(Y)) = \log(\mu) = \alpha + \beta x
 \]
 This yields a “loglinear” model.

 - **Logit link**, which is often used when $0 \leq \mu \leq 1$ (when response is dichotomous/binary and we’re interested in a probability).
 \[
 \log(\mu/(1 - \mu)) = \alpha + \beta x
 \]
General Model Formula for a GLM

\[g(\mu) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k \]

The links ones given on previous slide and below are special ones (depending on the assumed distribution):

<table>
<thead>
<tr>
<th>Distribution</th>
<th>“Natural Parameter”</th>
<th>“Canonical Link”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>(\mu)</td>
<td>Identity</td>
</tr>
<tr>
<td>Poisson</td>
<td>(\log(\mu))</td>
<td>(\log)</td>
</tr>
<tr>
<td>Binomial</td>
<td>(\log(\mu/(1-\mu)))</td>
<td>(\text{logit})</td>
</tr>
</tbody>
</table>
Natural Exponential Family of Distributions

“One-Parameter Exponential Distribution”

Probability density or mass functions belonging to the natural exponential family have the general form

\[f(y_i; \theta_i) = \exp \{a(y_i)b(\theta_i) - c(\theta_i) + d(y_i)\} \]

where

- \(y_i\) is an observation \((i = 1, \ldots, N)\).
- \(\theta_i\) is the parameter of the distribution for \(i\) and \(b(\theta_i)\) is the location parameter (i.e., the mean; other parameters such as variance are often considered “nuisance” parameters).
- \(a(.)\), \(b(.)\), \(c(.)\), and \(d(.)\) are all functions.

When \(a(y_i) = y_i\), then the density/mass is in “canonical form”, and we have

\[f(y_i; \theta_i) = \exp\{y_i b(\theta_i) - c(\theta_i) + d(y_i)\} \]

When in canonical form, the “natural parameter” is \(b(\theta_i)\).
According to Webster’s Dictionary

Canonical means

- conforming to a general rule
- reduced to the simplest or clearest scheme possible
- the simplest form of a matrix (specifically the form of a square matrix that has zero off-diagonals).

Now for some examples...
The Poisson Distribution

\[f(y; \mu) = \frac{\mu^y e^{-\mu}}{y!} \]

where

\[y = 0, 1, 2, \ldots \]

\[\theta = \mu \] (the parameter of the distribution).

Now to put this in canonical form:

\[
f(y; \mu) = \exp \left(\log \left(\frac{\mu^y e^{-\mu}}{y!} \right) \right)
= \exp \left(y \log(\mu) + e^{-\mu} - \log(y!) \right)
= \exp \left(y b(\mu) - c(\mu) + d(y) \right)
\]

\[a(y) = y \]
\[b(\mu) = \log(\mu), \text{ the natural parameter.} \]
\[c(\mu) = \exp(-\mu). \]
\[d(y) = -\log(y!). \]

The canonical link for the Poisson distribution: \(\log(\bullet) \).
The Binomial Distribution

\[f(y; \pi) = \binom{n}{y} \pi^y (1 - \pi)^{n-y} \]

where \(y = 0, 1, \ldots, n \).

\(n \) = number of trials.
\(\pi \) = probability of a success.
\(\pi \) is the parameter of interest and \(n \) is assumed to be known.

We now re-express the distribution as

\[
\begin{align*}
 f(y; \pi) &= \exp \left(\log \left(\binom{n}{y} \pi^y (1 - \pi)^{n-y} \right) \right) \\
 &= \exp \left(y \log(\pi) + (n - y) \log(1 - \pi) + \log \left(\binom{n}{y} \right) \right) \\
 &= \exp \left(y \log(\pi/(1 - \pi)) + n \log(1 - \pi) + \log \left(\binom{n}{y} \right) \right) \\
 &= \exp \left(yb(\pi) - c(\pi) + d(y) \right)
\end{align*}
\]
Canonical Form of the Binomial Distribution

\[f(y; \pi) = \exp(y \log(\pi/(1 - \pi)) + n \log(1 - \pi) + \log \binom{n}{y}) \]

\[= \exp(yb(\pi) - c(\pi) + d(y)) \]

where
\[a(y) = y \]
\[b(\pi) = \log(\pi/(1 - \pi)), \text{ the natural parameter} \]
\[c(\pi) = -n \log(1 - \pi) \]
\[d(y) = \log \binom{n}{y}. \]

The canonical link is the logit— the log of the odds.
Exponential Dispersion Family

Generalization of the one-parameter exponential family: includes a constant scale parameter ϕ.

The canonical form of the exponential dispersion family:

$$f(y_i; \theta_i, \phi) = \exp \left[\frac{y_i b(\theta_i) - c(\theta_i)}{r_i(\phi)} + d(y_i, \phi) \right]$$

where $r_i(\phi)$ is a function of the dispersion parameter.

Notes:

- For Poisson and Binomial $r_i(\phi) = 1$.
- If ϕ is known and $r_i(\phi) = r(\phi)$, then back to one-parameter exponential family.

With this generalization...
Normal Distribution

\[f(y; \mu; \sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left(\frac{-1}{2\sigma^2} (y - \mu)^2\right) \]

\(\theta\) (parameter of the distribution) is \(\mu\), the mean. The variance \(\sigma^2\) is considered a “nuisance” parameter. Putting \(f(y; \mu)\) into it’s canonical form.

\[
f(y; \mu; \sigma^2) = \exp\left(\log\left(\frac{1}{(2\pi\sigma^2)^{1/2}}\right)\right) \exp\left(\frac{-1}{2\sigma^2} (y - \mu)^2\right) = \exp\left(\log\left((2\pi\sigma^2)^{-1/2}\right)\right) \exp\left(\frac{-1}{2\sigma^2} (y - \mu)^2\right) = \exp\left[\frac{y\mu - \mu^2/2}{2\sigma^2} - 1/2(\log(2\pi\sigma^2)) - \frac{y^2}{2\sigma^2}\right] = \exp\left[\frac{yb(\mu) - c(\mu)}{r(\sigma^2) + d(y_i, \sigma^2)}\right]
\]
The Canonical Form of the Normal Distribution

\[
f(y; \mu; \sigma^2) = \exp \left[y \frac{\mu - \mu^2/2}{2\sigma^2} - \frac{1}{2}(\log(2\pi\sigma^2)) - \frac{y^2}{2\sigma^2} \right]
\]

\[
= \exp \left[y b(\mu) - c(\mu) \frac{r(\sigma^2)}{r(\sigma^2)} + d(y_i, \sigma^2) \right]
\]

where

\[
a(\mu) = y \\
b(\mu) = \mu \\
c(\mu) = \mu^2/2. \\
d(y, \phi) = -\frac{1}{2}(\log(2\pi\sigma^2)) - \frac{y^2}{(2\sigma^2)}. \\
r(\sigma^2) = \sigma^2
\]

So,

\[
b(\mu) = \mu \text{ is the “natural parameter”}. \\
The canonical link is the identity.
The Normal GLM: Ordinary linear regression

- Generalized linear models go beyond ordinary linear regression in two ways
 1. The random component can be something other than Normal.
 2. We can model a function of the mean.

- GLM have a definite advantage over the “traditional” way of analyzing non-normal responses (Y). The traditional way to handle non-normal responses:
 1. Transform your data so that responses are approximately Normal with constant variance.
 2. Use least squares.

- Transforming to normality with constant variance very rarely works...
Problem with the Traditional Approach

- A transformation that produces constant variance may not yield normally distributed response.
 Counts that have a Poisson distribution where $E(Y) = \mu$ and $\text{Var}(Y) = \mu$.
 Binomial distributed responses where $E(Y) = n\pi$ and $\text{Var}(Y) = n\pi(1 - \pi)$.

- Linear models often fit discrete data very badly — they can yield predicted values of μ that are outside the range of possible values for Y.
 - Consider counts that have a Poisson distribution where $Y \geq 0$.
 - Consider Binomial distributed responses where $0 \leq \pi \leq 1$.
 - Linear models can yield negative predictions.
Advantage of GLM over Traditional Regression

- You don’t have to transform Y to normality. The choice of link is separate from choice of random component.
 If the link produces additive effects, then don’t need constant variance. (I’ll show an example of this next week).

- The models are fit using maximum likelihood. Thus optimal properties of estimators.

Next we’ll now talk about GLMS for

1. Dichotomous (binary) data — linear, logit, probit and logistic regression models. (introduce them now and go into much more detail later).

2. Poission regression for count data — these are very similar to regression that you are familiar with, but with a twist.