Edpsych/Psych/Stat 587 Spring 2021 C.J. Anderson

Homework # 2 Due tba

Use the following HLM model to answer questions below:

1. Level 1

 $\mathrm{math}_{ij} = \beta_{0j} + \beta_{1j}(\mathrm{SES}_{ij} - \overline{\mathrm{SES}}_j) + \beta_{2j}(\mathrm{female}_{ij}) + \beta_{3j}(\mathrm{minority}_{ij}) + R_{ij}$

where $R_{ij} \sim N(0, \sigma^2)$ and independent (within and between schools).

Level 2

$$\beta_{0j} = \gamma_{00} + \gamma_{01} \text{SES}_j + U_{0j}$$

$$\beta_{1j} = \gamma_{10}$$

$$\beta_{2j} = \gamma_{20}$$

$$\beta_{3j} = \gamma_{30}$$

where $U_{0j} \sim N(0, \tau_0^2)$ and independent (over schools and with R_{ij}).

- (a) What is the corresponding linear mixed model?
- (b) What is the corresponding marginal model?
- 2. Suppose that you have a data set and you want to model science scores of students within school (i.e., $Y_{ij} = \text{science}_{ij}$). Write out the following for a random intercept model where math scores are predictors (i.e., $x_{ij} = \text{math}_{ij} \dots$ don't forget the assumptions
 - (a) As an HLM
 - (b) What is the corresponding linear mixed model?
 - (c) What is the corresponding marginal model?

- 3. Suppose that you have a data set and you want to model science scores of students within school (i.e., $Y_{ij} = \text{science}_{ij}$). Write out the following for a random intercept model where school centered math scores are predictors of Y_{ij} s (i.e., $cx_{ij} = x_{ij} \bar{x}_i = \text{math}_{ij} \sum_i \text{math}_{ij}/n_j$) and school mean (i.e., $\bar{x}_j = \sum_i \text{math}_{ij}/n_j$) is a predictor of the intercept... don't forget the assumptions
 - (a) As an HLM
 - (b) What is the corresponding linear mixed model?
 - (c) What is the corresponding marginal model?