Edpsych/Soc 584 & Psych 594 C.J.Anderson

Overview/Summary of Multivariate Procedures: PCA = principal components analysis, CCA = canonical correlation analysis, MANOVA = multivariate analysis of variances, and DA = (linear) discriminant analysis.

	Multivariate Procedures			
Differences	PCA	CCA	MANOVA	(linear) DA
Data	$\begin{array}{c} 1 \text{ set of} \\ p \ge 2 \text{ variables} \end{array}$	2 sets: $p \ge 2$ variables and $q \ge 2$ variables	2 sets: group(s)/factors and (≥ 1) variables	2 sets: group/classification variable and $p \ge 2$ variables
Assumptions or requirements	– none –	$oldsymbol{S}_{kk} ext{ (or } oldsymbol{\Sigma}_{kk})$ are positive definite	$oldsymbol{X} \sim \mathcal{N}_p(oldsymbol{\mu}_k, oldsymbol{\Sigma})$	equal $\boldsymbol{\Sigma}_k$
Focus on relationship	Within set of variables	Between sets of variables	Between groups relative to within groups	Between groups relative to within groups
Goals &/or Purposes	Account for as much variances as possible – interpretation – data reduction – diagnostics – input to other	Determine nature & strength of the relation between sets variables – how variables contribute to this	Statistical inferences regarding μ_k (i.e., hypothesis tests regarding mean vectors)	 (1) Discrimination or descriptions of differences between groups (eg, MANOVA) (2) Classification or prediction
Criterion	Variance of linear combination. Find $\mathbf{Y} = \mathbf{l}' \mathbf{X}$ that maximizes $\operatorname{var}(\mathbf{Y}) = \frac{\mathbf{l}' \mathbf{S} \mathbf{l}}{\mathbf{l}' \mathbf{l}}$	Correlation between linear combinations of of variables of the two sets: maximize corr (U, U) $= \frac{a' \Sigma_{12} b}{\sqrt{a' \Sigma_{11} a} \sqrt{b' \Sigma_{22} b}}$ where $U = a' X$ and $V = b' X$	Matrix needed $W^{-1}B$	Ratio of weighted squared distances between group & grand mean vectors relative to variance of (linear) discriminants. Find $\boldsymbol{y} = \boldsymbol{l}' \boldsymbol{X}$ that maximizes $\frac{\boldsymbol{l}' \boldsymbol{B} \boldsymbol{l}}{\boldsymbol{l}' \boldsymbol{W} \boldsymbol{l}}$

Similarities :

- All seek (or depend on) linear combinations of the original variables that maximize some criterion.
- The linear combinations are obtained from the eigenvalues of some matrix and the maximum value of the criterion equals the eigenvalue (or function of it) of the matrix.
- Successive linear combinations (given previous ones) can be found that maximize the criterion and are uncorrelated with the previous linear combinations.
- All techniques use the inter-relationship between variables (i.e., covariance or correlation matrix).
- All try to reduce the dimensionality of the problem (data reduction) and thus aid in the description and interpretation of relations between variables.
- Geometrically, all methods can be thought of as finding (or studying) sub-spaces of the original higher dimensional space.
- Expect for MANOVA and where statistical inferences (hypothesis testings, confidence statements) are desired, none of the techniques requires the assumption of multivariate normality.
- Except for PCA, all can be thought of as a special case of canonical correlation analysis.