EdPsych 584/Psych 594 Applied Multivariate Analysis C.J. Anderson

Useful commands in SAS PROC IML (last revised 2/12/2015).

Let

- A, B, C, U, and X be rectangular matrices.
- **D** a diagonal matrix.
- S, W and R be square symmetric matrices.
- $\boldsymbol{y}, \boldsymbol{z}, \boldsymbol{L}$ be vectors.
- c, n, p be scalars (constants).

Command	Example	Explanation/Desciription
*	C = A * B;	Matrix multiplication
_	C = A - B;	Subtraction
+	C = A + B;	Matrix or vector addition
/	C = A/n;	Divide elements of A by constant n
, 	C = -A;	Reverses the sign of the elements
##	C = A # # 2	Take the power of elements of A (element-wise)
sqrt	C = sqrt(A);	Take the square root of the elements of a matrix
4	$C = A^{\circ};$	Transpose operator
$\operatorname{nrow}()$	$n = \operatorname{nrow}(\boldsymbol{X});$	Returns the number of rows of matrix X
ncol()	$p = \operatorname{ncol}(\boldsymbol{X});$	Returns the number of columens of matrix
U U	_ 、 , , ,	X
J(n,p,c)	$\boldsymbol{z} = J(n, p, c);$	Creates a matrix or vector with n rows, p columns and all elements equal to c . This is useful for creating a vector of ones (e.g., an $(n \times 1)$ vector of ones, one= $J(n, 1, 1)$).
I(n)	Ident = I(n);	Creates an identity matrix $(n \times 1)$ vector of ones, one $= S(n, 1, 1)$.

Command	Example $C = A B;$	Explanation/Desciription Horizontally concatenation of matrices
//	C = A//B;	Vertical concatenation of matrices
diag()	$D = \operatorname{diag}(\boldsymbol{S});$	This creates a diagonal matrix where the
		argument is a square matrix or a vector
	$D = \operatorname{diag}(\boldsymbol{z});$	(vector argument)
vecdiag()	$\boldsymbol{z} = \operatorname{vecdiag}(\boldsymbol{S});$	Function creates a column vector whose el-
		ements are the diagonal of the square ma-
r 1	o v [1 o]	
[]	$y3 = \boldsymbol{X}[1:n,3];$	Creates a vector $y3$ that is the 3rd col- umn of matrix X . The square brackets
		"[" and "]" can be used to indicate specific elements of a vector or matrix. The colon
		: is used to indicater series (e.g., Take rows 1 through n).
$\det()$	$c = \det(A);$	Computes the determinant of matrix
inv()	$B = \operatorname{inv}(A);$	Finds the inverse of a square symmetric
		matrix.
eigen()	call eigen (L, U, S) ;	Finds of eigenvalues and vectors of the 3rd
	•••••••••••••••••••••••••••••••••••••••	argument (e.g., S) and puts the eigenval-
		ues into L and eigenvectors (as columns)
		in U.
$\operatorname{svd}()$	call $svd(U,q,V,A)$	Finds the singular values and vectors of a
0		matrix A $(m \times n)$ where $U m \times n$ contain
		left singular vectors, $U(n \times n)$ contains
		right singular vectors, and q $(n \times 1)$ con-
		tains the singular values. Note that $m \ge n$.
use mydata	use mydata;	This statement indicates what sasdata set
, , , , , , , , , , , , , , , , , , ,	•	you want to access
read	read all var{ test1	This statement reads data from an open
	test2 test3 test4} into X;	sasdata set into a matrix (or vector)
print stuff	α, print X z;	Prints these on the same line of output (if
print stun	printe 72 2,	possible).
	print X, z;	The comma indicates to go to next line
		(i.e., print X and then on new line print z.
	print 'text' X	You can add text to the print command.
	print x[format=5.3]	You can also indicate the format for print-
		ing numerical values. Note that "for-
		mat=5.3" means that there will be 5 num-
		bers and at most 3 decimal places. You can
		play with the numbers to get what "looks"
		best.

An example of a module: